5.1. Tason yhtälö a(x – x0) + b(y – y0) + c(z – z0) = 0

Slides:



Advertisements
Samankaltaiset esitykset
Yleistä Läsnäolovelvollisuus Poissaolojen selvitys Käyttäytyminen
Advertisements

Esimerkkejä Esimerkki 1. Hetkellä t1 = 8 s on auton asema s1 = 600 m ja hetkellä t2 = 28 s on s2 = 800 m. Kuinka suuri on keskinopeus? s2 -s1 s 800 m.
MB 3 Lineaarisia polynomifunktioita
Polynomifunktiot MA 02 Läsnäolovelvollisuus Poissaolojen selvitys
MAB8: Matemaattisia malleja III
Yhtälön ratkaiseminen
Kuperan linssin piirto- ja laskutehtävä 2005
Kolmion ominaisuuksia 2
Analyyttinen geometria MA 04
GEOMETRIA MAA
Iitin yläkoulu 9. Luokka Antti Halme
Iitin yläkoulu 9. Luokka Antti Halme
Derivaatta MA 07 Derivaatta tarkoittaa geometrisesti käyrälle piirretyn tangentin kulmakerrointa.
AS Automaation signaalinkäsittelymenetelmät
AS Automaation signaalinkäsittelymenetelmät
MAB8: Matemaattisia malleja III
TMA.003 / L3 ( )1 3. Funktioista 3.1. Kuvaus ja funktio Olkoon A ja B ei-tyhjiä joukkoja. Tulojoukon A  B = {(x,y) | x  A, y  B} osajoukko on.
KULMAN PUOLITTAJA Kulman puolittaja on kulmaan kärjestä alkava puolisuora, joka jakaa kulman kahdeksi yhtä suureksi kulmaksi. k a/2 k Uraehto: Kulman puolittaja.
1.2.1 KÄÄNTEISFUNKTIO JA SEN KUVAAJA
1.1. Itseisarvo * luvun etäisyys nollasta E.2. Poista itseisarvot
Diofantoksen yhtälö 10x + 4y = 36.
m0 M7 Maksimitermi Minimitermi Boole A = A A · 0 = 0 SOP De Morgan POS
1.a) f(x) = 2x(x2 – 3) = 0 2x = tai x2 – 3 = 0 x = tai x2 = 3
Janan keskinormaali A A ja B ovat janan päätepisteet ja M sen keskipiste. M Janan keskinormaali on kohtisuorassa janaa vastaan sen keskipisteessä. AM =
LINEAARINEN MUUTOS JA KULMAKERROIN
Aritmeettinen jono jono, jossa seuraava termi saadaan edellisestä lisäämällä sama luku a, a + d, a+2d, a +3d,… Aritmeettisessa jonossa kahden peräkkäisen.
Aritmeettinen jono jono, jossa seuraava termi saadaan edellisestä lisäämällä sama luku a, a + d, a+2d, a +3d,… Aritmeettisessa jonossa kahden peräkkäisen.
2.4. Raja-arvo äärettömyydessä ja raja-arvo ääretön E.1.
Vaasan yliopisto / Sähkötekniikka SATE1110 SÄHKÖMAGNEETTINEN KENTTÄTEORIA 4.DIVERGENSSI JA DIVERGENSSI TEOREEMA.
Murtoluvun supistaminen
3.1.2 Skalaaritulo eli pistetulo
Murtoyhtälöt - Yhtälö, jossa nimittäjässä tuntematon
3.2. Ensimmäisen asteen polynomifunktio
Aikasarja-analyysin perusteet
Vektorin komponentit 2 vektoria määrittävää tason, kun E.1.
Koveran linssin piirto- ja laskutehtävä 2005
*14. Kolmiossa yksi kärki on origossa, toinen pisteessä A= (9, 0), B=(3,6) Osoita, että kolmion pyörähtäessä x-akselin ympäri syntyvän kappaleen tilavuus.
PARAABELI (2. ASTEEN FUNKTION KUVAAJIA)
1.4. Integroimismenetelmiä
Muuttujien riippuvuus
2.2.2 Avaruuden vektori koordinaatistossa
KESKIVIIKKO KOTITETEHTÄVÄT. Siis suorat ovat kohtisuorassa toisiaan vastaan.
4. Optimointia T
Negatiiviset luvut. Esimerkki 1 Järjestä talven matkakohteiden lämpötilat kylmimmästä lämpimimpään.
Suoran yhtälön muodostaminen
2.1.2 Tason vektori koordinaatistossa
Funktio.
UMF I Luento 3. Maanantaiksi Lue kappaleet I.3 ja I.4 Laske funktion x + y 2 osittaisderivaatat määritelmän II.1.1 nojalla Anna esimerkki funktiosta f.
Paraabelin huippu Paraabelin huippu
Suora Suorien leikkauspiste Yhtälöparin ratkaisu
3.3. Käyrän tangentti ja normaali
Neperin luku e ja funktio y = ex
S ysteemianalyysin Laboratorio Teknillinen korkeakoulu Esitelmä 4 – Janne Nurmi Optimointiopin seminaari - Kevät 2008 Kotitehtävä 4 - Ratkaisu
Luonnollisen logaritmifunktion derivaatta
Suorien leikkauspiste
Kotitehtävän 8 ratkaisu Janne Kunnas Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki oikeudet.
MAB3 suorat.
Tasogeometria Peruskäsitteinä piste ja suora. Suora AB = Suora l
Vektorit Trigonometria
1.Peruskäsitteitä vektoreista
Pohjatunti Mab 3 /mls. Harjoituskoe: 1. Suora kulkee pisteiden (2, 9) ja (–1, ‑ 6) kautta. Määritä kyseisen suoran yhtälö. Missä pisteessä suora leikkaa.
Syventävä matematiikka 2. kurssi
21. Tasainen etenemisliike on liikettä, jossa kappaleen nopeus ei muutu  
Stabiilit monistot ja kriisit
Suoran yhtälön muodostaminen, kun suoralta tunnetaan 2 pistettä
1.4.2 Vektorien määräämä avaruus
YHTÄLÖPARI 1.1. Yhtälöparin ratkaiseminen piirtämällä
PAIKANMÄÄRITYS III Trigonometriset menetelmät
Kertausta FUNKTIOISTA MAB5-kurssin jälkeen (Beta 2.0)
Samankohtaiset kulmat
Esityksen transkriptio:

5.1. Tason yhtälö a(x – x0) + b(y – y0) + c(z – z0) = 0 Pisteen (x0, y0. z0) kautta kulkevan ja vektoria vastaan kohtisuorassa olevan tason yhtälö on a(x – x0) + b(y – y0) + c(z – z0) = 0 E.1. Määritä jokin tason 2x – 3y + z + 6 = 0 jokin normaalivektori E.2. Taso kulkee pisteen (5, -1, -4) kautta ja on kohtisuorassa vektoria vastaan. Määritä tason yhtälö. TAPA 2 Tason yhtälö muotoa 4x – 3y + 2z + d = 0 Tason piste (5, -1, -4): 4  5 – 3  (-1) + 2  (-4) + d = 0 d = -15 4(x – 5) - 3(y + 1) + 2(z + 4) = 0 4x – 20 – 3y – 3 + 2z + 8 = 0 4x – 3y + 2x – 15 = 0

5.2 Suoran asema tasoon nähden Katso kuva s. 127 E.1. Osoita, että suora on tasossa 3x – 2y + z – 8 = 0 Sijoitetaan suoran mielivaltainen piste (3 + t, 1 + 2t, 1 + t) tason yhtälöön: 3(3 + t) – 2(1 + 2t) + (1 + t) – 8 = 0 9 + 3t – 2 – 4t + 1 + t – 8 = 0 0 = 0 tosi kaikilla parametrin t arvoilla. Täten suora on tasossa.

E.2. Osoita, että suora on yhdensuuntainen tason 2x – y + z + 1 = 0 kanssa, mutta ei ole tämän tason suora. Suora on tason suuntainen, jos se on kohtisuorassa tason normaalivektoria vastaan. Suoran suuntavektori: Tason normaalivektori:  suora on tason suuntainen Suoran pisteessä (0, 2, 2) : 2  0 – 2 + 2 + 1 = 1 ≠ 0, joten suora ei ole tasossa.

E.3. Määritä suoran ja tason x + y + z - 4 = 0 leikkauspiste. Koordinaatit toteuttavat tason yhtälön: x + y – z – 4 = 0 1 – t + 2 – t + 3 + t – 4 = 0 -t + 2 = 0 t = 2 x = 1 – 2 = -1 y = 2 – 2 = 0 z = 3 + 2 = 5 Leikkauspiste: (-1, 0, 5)

5.3 Tasojen keskinäinen asema (katso s. 131) E.1. Määritä tasojen yhteiset pisteet. a) 2x + y – z +1 = 0 ja x – y – 2z + 2 = 0 Normaalivektorit: ovat erisuuntaisia, koska Tasot leikkaavat pitkin suoraa Merkitään z = t Tasojen leikkaussuoran yhtälö 3x = 3z - 3 Tasot leikkaavat pitkin suoraa, joka kulkee pisteen (-1, 1, 0) kautta ja on vektorin suuntainen x = z - 1 y = -2x + z – 1 = -2(z – 1) + z – 1 = -z + 1

b) x – 2y – z + 2 = 0 ja – 2x + 4y + 2z + 5 = 0 T1: x – 2y – z + 2 = 0 T2: – 2x + 4y + 2z + 3 = 0 Koska niin normaalivektorit ja täten myös tasot ovat yhdensuuntaiset Piste (0, 1, 0) tasossa T1, mutta ei tasossa T2, sillä -2x + 4y + 2z + 3 = -2  0 + 4  1 + 2  0 + 5 = 9 ≠ 0. Siis tasot ovat yhdensuuntaiset, mutta eivät yhdy, joten niillä ei ole yhtään yhteistä pistettä.

c) –x + 3y + z – 2 = 0 ja 3x – 9y – 3z + 6 = 0 Jaetaan tason 3x – 9y – 3z + 6 = 0 yhtälö luvulla -3 saadaan -x + 3y +z - 2 = 0 Siis tasot ovat yksi ja sama taso ja yhteisiä pisteitä ovat kaikki tämän tason pisteet.

E.2. Millä vakion a arvolla tasot 2x + ay + z – 4 = 0 ja ax + 8y – 2z – 1 = 0 ovat a) yhdensuuntaiset b) toistensa normaalitasot a) Tasot ovat yhdensuuntaiset, jos niiden normaalivektorit ovat yhdensuuntaiset Siis on olemassa luku t siten, että Tutkitaan, toteuttaako ratkaisu myös kolmannen yhtälön: 2 = -½  (-4) 2 = 2 tosi, siis toteuttaa Tasot yhdensuuntaiset, kun a = -4

E.2. Millä vakion a arvolla tasot 2x + ay + z – 4 = 0 ja ax + 8y – 2z – 1 = 0 ovat b) toistensa normaalitasot Tasot ovat toistensa normaalitasoja, kun niiden normaalivektorit ovat kohtisuorassa toisiaan vastaan:

Tasojen välinen kulma = tasojen normaalien välinen kulma E.4. Laske tasojen 2x – y – 2z + 6 = 0 ja x + 2y – 2z – 8 = 0 välinen kulma

Kolmen tason keskinäinen asema

E.1. Määritä tasojen yhteiset pisteet a) 2x – 3y – z – 4 = 0, 3x + 4y + z – 5 = 0 ja 4x + 5y – 2z + 3 = 0  1 V: Yhtälöryhmän ratkaisu piste (2, -1, 3)  2  1 5x + y - 9 = 0 10x +13y -7 = 0 x sijoittamalla: 10x + 13  (-1) – 7 = 0 10x = 20 x = 2 z sijoittamalla: 3  2 + 4  (-1) + z – 5 = 0 z = 3  (-2) 11y + 11 = 0 y = -1

E.1. Määritä tasojen yhteiset pisteet b) x + y + z – 1=0 , -2x + y -2z + 2 = 0 ja 4x + y +4z = 0  2  1  2  1 3y - 1 = 0 3y + 4 = 0 V: Yhtälöryhmällä ei ole ratkaisua eikä tasoilla näin ollen yhtään yhteistä pistettä

E.1. Määritä tasojen yhteiset pisteet c) 2x + y + z – 1 = 0, -2x + y - 2z + 2 = 0 ja 2x - 3y + 3z - 3 = 0 2y - z + 1 = 0 -2y + z – 1 = 0 Tasojen yhteiset pisteet muodostavat suoran kulkee pisteen (0, 0, 1) kautta ja on vektorin Sijoittamalla z = 2y + 1 yhtälöön: 2x + y + (2y + 1) – 1 = 0 2x + 3y = 0 suuntainen