PARAABELI (2. ASTEEN FUNKTION KUVAAJIA)

Slides:



Advertisements
Samankaltaiset esitykset
Yleistä Läsnäolovelvollisuus Poissaolojen selvitys Käyttäytyminen
Advertisements

Lineaarinen riippuvuus
MB 3 Lineaarisia polynomifunktioita
Polynomifunktiot MA 02 Läsnäolovelvollisuus Poissaolojen selvitys
MAB8: Matemaattisia malleja III
Yhtälön ratkaiseminen
Lineaarisia malleja.
5.1. Tason yhtälö a(x – x0) + b(y – y0) + c(z – z0) = 0
Analyyttinen geometria MA 04
MAA0 LUKUALUEET Luonnolliset luvut N = 0,1,2,3,…
Nopeus s t v nopeus = matka: aika v = s :t
Kapasitanssi C Taustaa: + A d E _
Iitin yläkoulu 9. Luokka Antti Halme
Numeerisia ja algebralllisia menetelmiä MA 12
Derivaatta MA 07 Derivaatta tarkoittaa geometrisesti käyrälle piirretyn tangentin kulmakerrointa.
Valitse seuraaviin vaihtoehtotehtäviin oikea vastaus…
KERTAUSTA PERUSASTEEN MATEMATIIKASTA Piia junes
MAB8: Matemaattisia malleja III
Prosenttilaskua, tiivistelmä
1.5. Trigonometriset yhtälöt
LOGARITMI Eksponenttiyhtälön 10x = a ratkaisua sanotaan luvun a logaritmiksi Merkintä x = lga Huom. vain positiivisilla luvuilla on logaritmi.
TMA.003 / L3 ( )1 3. Funktioista 3.1. Kuvaus ja funktio Olkoon A ja B ei-tyhjiä joukkoja. Tulojoukon A  B = {(x,y) | x  A, y  B} osajoukko on.
RSA – Julkisen avaimen salakirjoitusmenetelmä Perusteet, algoritmit, hyökkäykset Matti K. Sinisalo, FL.
1.2.1 KÄÄNTEISFUNKTIO JA SEN KUVAAJA
1.1. Itseisarvo * luvun etäisyys nollasta E.2. Poista itseisarvot
Diofantoksen yhtälö 10x + 4y = 36.
Matematiikan yo-ohjeita Yleisohjeita  Laskimet ja taulukot tuotava tarkastettaviksi vähintään vuorokautta ennen kirjoituspäivää kansliaan.  Laskimien.
11. Kaksi uhkapelaajaa heittää vuorotellen noppaa
1.a) f(x) = 2x(x2 – 3) = 0 2x = tai x2 – 3 = 0 x = tai x2 = 3
2) Kuinka monta prosenttia luku a on luvusta b
TÄRPPEJÄ – YO 2010 PITKÄ MATEMATIIKKA.
LINEAARINEN MUUTOS JA KULMAKERROIN
Pienin ja suurin arvo suljetulla välillä
Aritmeettinen jono jono, jossa seuraava termi saadaan edellisestä lisäämällä sama luku a, a + d, a+2d, a +3d,… Aritmeettisessa jonossa kahden peräkkäisen.
Aritmeettinen jono jono, jossa seuraava termi saadaan edellisestä lisäämällä sama luku a, a + d, a+2d, a +3d,… Aritmeettisessa jonossa kahden peräkkäisen.
2.4. Raja-arvo äärettömyydessä ja raja-arvo ääretön E.1.
Jatkuvan funktion nollakohdat
Yhtälön ja epäyhtälön korottaminen neliöön Olkoon a, b  0. Tällöin a = b  a 2 = b 2, a < b  a 2 < b 2.
Murtoyhtälöt - Yhtälö, jossa nimittäjässä tuntematon
3.2. Ensimmäisen asteen polynomifunktio
1. Usean muuttujan funktiot
*14. Kolmiossa yksi kärki on origossa, toinen pisteessä A= (9, 0), B=(3,6) Osoita, että kolmion pyörähtäessä x-akselin ympäri syntyvän kappaleen tilavuus.
Todennäköisyyslaskenta
1.4. Integroimismenetelmiä
KESKIVIIKKO KOTITETEHTÄVÄT. Siis suorat ovat kohtisuorassa toisiaan vastaan.
2.1.2 Tason vektori koordinaatistossa
7. Määritä sellaisen ympyräsektorin keskuskulma, jonka pinta-ala on 1 ja piiri mahdollisimman lyhyt. Anna tulos 0,1 asteen tarkkuudella. Keskuskulma =
4.1. Funktion ääriarvot Funktion kasvu ja väheneminen
Funktio.
2. MÄÄRÄTTY INTEGRAALI Pinta-alan käsite Kirja, sivut
Paraabelin huippu Paraabelin huippu
Suora Suorien leikkauspiste Yhtälöparin ratkaisu
3.3. Käyrän tangentti ja normaali
3.1. SOVELLUKSIA, pinta-ala
Neperin luku e ja funktio y = ex
Luonnollisen logaritmifunktion derivaatta
Funktio ja funktion kuvaaja
MAB3 suorat.
MAB3 prosenttilasku.
TMA.003 / L3 ( ) I asteen yhtälö Perusaskeleet: (1) termi saa vaihtaa puolta, jos se samalla vaihtaa merkkiä 5x = 4x + 2  5x – 4x = 2 (2)
Funktion kuvaajan piirtäminen
TANGENTTI Suora, joka sivuaa käyrää.
Pohjatunti Mab 3 /mls. Harjoituskoe: 1. Suora kulkee pisteiden (2, 9) ja (–1, ‑ 6) kautta. Määritä kyseisen suoran yhtälö. Missä pisteessä suora leikkaa.
Laske päässä. Potenssi Kolmioita Tasakylkinen kolmio kaksi yhtä pitkää kylkeä kantakulmat yhtä suuret. Kolmion kulmien summa on 180°. Tasasivuinen.
Luvun jakaminen tekijöihin Luvun tekijät ovat ne luvut, joilla luku on jaollinen. Esim. luettele luvun 12 tekijät. 1, 2, 3, 4, 6, 12. Alkuluku on luku,
Syventävä matematiikka 2. kurssi
Funktion kuvaaja ja nollakohdat
k-kantaisen eksponenttifunktion ominaisuuksia
PAIKANMÄÄRITYS III Trigonometriset menetelmät
Kertausta FUNKTIOISTA MAB5-kurssin jälkeen (Beta 2.0)
Esityksen transkriptio:

6.2.1. PARAABELI (2. ASTEEN FUNKTION KUVAAJIA) y = x2+1 y = x2 y = x2 -1 aukeavat ylöspäin symmetrisiä y-akselin suhteen y-akseli on paraabelin akseli

Toisen asteen polynomifunktio f(x) = ax2 + bx + c , a  0 * kuvaaja paraabeli * sijainti koordinaatistossa riippuu kertoimista a, b, c * kaartumisen jyrkkyys riippuu kertoimesta a * paraabeli on symmetrinen huipun kautta kulkevan pystysuoran akselin suhteen Jos a > 0, paraabeli ylöspäin aukeava Jos a < 0, paraabeli alaspäin aukeava

Nollakohtien lukumäärä eli 2 nk ax2 + bx + c= 0, a0 1 nk ei nk

E.1. Piirrä paraabeli y = x2 - 4 x y = x2 - 4 -2 (-2)2 - 4 = 0 -1 (-1)2 - 4 = -3 0 02 - 4 = -4 1 12 - 4 = -3 2 22 - 4 = 0

7.1.1. Toisen asteen yhtälön perusmuoto x2 + bx + c = 0, a  0 7.1.2. Yhtälö ax2 + bx = 0 - vasen puoli jaetaan tekijöihin - tulo on nolla jos ja vain jos jokin tulon tekijöistä on nolla Tulon nollasääntö ab = 0  a = 0 tai b = 0 E.1. x(x – 2) = 0 x = 0 tai x – 2 = 0 x = 2

E.2. a) 4x2 – 8x = 0 4x(x – 2) = 0 4x = 0 |:4 tai x – 2 = 0 x = 0 x = 2 V: x1 = 0, x2 = 2 b) x2 = -4x x2 + 4x = 0 x(x + 4) = 0 x = 0 tai x + 4 = 0 x = -4 V: x1 = 0, x2 = -4

7.1.3. Yhtälö ax2 + c = 0 - ratkaistaan ensin x2: x2 = r tai E.3. a) x2 – 9 = 0 x2 = 9 x = ±3 b) 2x2 – 10 = 0 2x2 = 10 |:2 x2 = 5

E.4. a) (x + 2)(x – 2) = 12 x2 – 4 = 12 x2 = 16 x = ±4 b) (x + 2)2 = 4x x2 +4x + 4 = 4x x2 +4x + 4 - 4x = 0 x2 = -4 V: ei reaalista ratkaisua

E.5. 10x3 – 10x = 0 10x(x2 – 1) = 0 10x = 0 | :10 tai x2 – 1 = 0 x = 0 x2 = 1 x = ±1

7.2.2. asteen yhtälön ratkaisukaava ax2 + bx + c= 0, a0 Taulukkokirja! E.1. x2 + 4x - 5 = 0 a = 1 b = 4 c = -5

E.2. Ratkaise yhtälö x(x - 3) - 2 = 8 x2 - 3x - 2 = 8 x2 - 3x - 2 - 8 = 0 x2 - 3x - 10 = 0 a =1 b = -3 c = -10 V: x1 = 5, x2 = -2

E.3. Ratkaise yhtälö | ·8 a = 1 b = 6 c = -16 V: x1 = 2 x2 = -8

Esimerkki Tapa 2: Ratkaisukaavalla: a = 4 b = -2 c = 0 4x2 - 2x = 0 Tapa 1: Tulon nollasäännöllä: 2x(2x - 1) = 0 2x = 0 tai 2x - 1 = 0 x = 0 2x = 1 :2 x = ½ x= ½ tai x = 0

Esimerkki Tapa 2: Ratkaisukaavalla: a = 4 b = 0 c = -16 4x2 - 16 = 0 Tapa 1: 4x2 - 16 = 0 4x2 = 16 :4 x2 = 4 x= 2 tai x = -2

7.2.3. Diskriminantti D = b2 - 4ac eli 2. asteen yhtälön ratkaisukaavassa neliöjuuren alla oleva lauseke. E.1. Laske yhtälön diskriminantti a) x2 + 3x - 4 = 0 b) 3x2 – 4x + 5 = 0 a) a = 1 b = 3 c = -4 D = 32 - 4·1·(-4) = 25 a) a = 3 b = -4 c = 5 D = (-4)2 - 4·3·5 = -44

Toisen asteen yhtälön ratkaisujen lukumäärä diskriminantin avulla ax2 + bx + c = 0 Jos D > 0, on yhtälöllä kaksi erisuurta reaalista ratkaisua. Jos D = 0, on yhtälöllä yksi kaksinkertainen reaalinen ratkaisu. (kaksoisjuuri) Jos D < 0, ei yhtälöllä ole yhtään reaalista ratkaisua

E.2. Montako ratkaisua on yhtälöllä a) 2x2 - 3x - 4 = 0 b) 0,25x2 + x + 1 = 0 c) 3x2 - 4x + 2 = 0 ? a) D = (-3)2 – 4 · 2 · (-4) = 41 > 0  2 ratkaisua b) D = 12 - 4 · 0,25 · 1 = 0  1 ratkaisu c) D = (-4)2 - 4 · 3 · 2 = -8  ei ratkaisua reaalilukujoukossa

E.3. Millä a:n arvoilla yhtälöllä x2 - 4x + a = 0 on a) kaksi b) yksi c) nolla ratkaisua? D = (-4)2 - 4 · 1 · a = 16 - 4a a) 16 – 4a > 0 -4a > -16 a < 4 b) Yksi ratkaisu, kun D = 0: 16 - 4a = 0 -4a = -16 a = 4 c) 16 – 4a < 0 -4a < -16 a > 4

E.4. Määritä a, kun yhtälöllä x2 + (a – 1)x + 9 = 0 on yksi reaalinen ratkaisu. Mikä on tämä ratkaisu? a = 7: x2 + 6x + 9 = 0 D = (a - 1)2 – 4 · 1 · 9 = a2 - 2a + 1 – 36 = a2 – 2a - 35 = -3 a = -5: x2 - 6x + 9 = 0 = 3 a1 = 7 a2 = -5

Sillä aidataan 600 m2 suorakulmion muotoinen alue. E.6. Köyden pituus on 100 m. Sillä aidataan 600 m2 suorakulmion muotoinen alue. Miten pitkiä ovat sivut? x 50 - x x(50 - x) = 600 50x - x2 = 600 -x2 + 50x - 600 = 0 x2 – 50x + 600 = 0 V: 30 m, 20 m 20 m, 30 m x1 = 30 x2 = 20

7.3.1. 2. asteen yhtälön ratkaisujen summa ja tulo Jos toisen asteen yhtälön ax2 + bx + c = 0 ratkaisut ovat x1 ja x2 , niin Huomaa, jos a = 1, niin x1 + x2 = -b ja x1 · x2 = c

E.1. Määritä yhtälön ratkaisujen summa ja tulo a) x2 + 4x - 5 = 0 a = 1 b = 4 c = -5 x1 + x2 = - b = -4 x1 · x2 = c = -5 (aikasemmin: x1 = 1 ja x2 = -5) b) 4x2 - 2x = 0 (aikaisemmin: x1 = 0 ja x2 = ½)

1) Laske nollakohdat x1 ja x2 2) ax2 + bx + c = a(x – x1)(x – x2) 7.3.2. Toisen asteen polynomin ax2 + bx + c jakaminen tekijöihin 1) Laske nollakohdat x1 ja x2 2) ax2 + bx + c = a(x – x1)(x – x2) Huom: Jos x1 = x2, niin ax2 + bx + c = a(x – x1)2 E.2. Jaa tekijöihin a) x2 – 4x – 5 b) 2x2 – 5x - 3 a) Ratkaisukaavalla x1 = 5 x2 = - 1 x2 - 4x - 5 = (x - 5)(x + 1) b) Ratkaisukaavalla x1= 3 x2 =-½ 2x2 - 5x - 3 = 2(x - 3)(x + ½) = (x - 3)(2x + 1)

Tekijälause x – a on P(x):n tekijä  P(a) = 0 Siis Binomi (x – a) on polynomin P(x) tekijä, jos ja vain jos x = a on polynomin P(x) nollakohta

E.3. (t.550b) Määritä a siten, että polynomilla ax2 – 6x + 4 on tekijänä x – 1 Tekijälauseen mukaan x = 1 on polynomin nollakohta: a · 12 – 6 · 1 + 4 = 0 a – 2 = 0 a = 2

Toisen asteen epäyhtälö Ratkaisu nollakohtia ja kuvaajaa käyttäen 1) Epäyhtälö perusmuotoon ax2 + bx + c > 0 (tai <, ≤, ≥) 2) Ratkaistaan nollakohdat 3) Hahmotellaan paraabeli (nollakohdat, aukeamissunnta) 4) Päätellään ratkaisu E.1. x2 + 4x - 5 > 0 x2 + 4x - 5 = 0 Nollakohdat: Kuvaaja: x = 1 tai x = -5 -5 1 Vastaus: x < -5 tai x > 1

E.2 a) x2 < 4  x2 - 4 < 0 Nollakohdat: Kuvaaja: x2 – 4 = 0 x2 = 4 x = ±2 + + -2 - 2 V: -2 < x < 2

E.3. x2 - 6x + 9 < 0 Nollakohdat: x2 – 6x + 9 = 0 Kuvaaja: + + x1 = x2 = 3 3 V: (tyhjä joukko)

E.4. Nollakohdat: -x2 + 8x – 16 = 0 Kuvaaja: x1 = x2 = 4 4 V: x  R

E.5. (t.570) Osoita, että funktion f(x) = x2 – 4x + 5 kaikki arvot ovat positiivisia x2 – 4x + 5 > 0 Kuvaaja: Nollakohdat: x2 – 4x + 5 = 0 + + ei ratkaisua, sillä D < 0 => f(x) > 0 kaikilla x  R

Esimerkkejä: 1. Millä x:n arvoilla funktio f(x) = 2x2 - 3x + 2 saa pienempiä arvoja kuin 4? 2x2 - 3x + 2 < 4 2x2 - 3x - 2 < 0 nollakohdat, paraabeli, vastaus 2. Millä vakion a arvoilla yhtälön x2 - 3ax + 2a = 0 ratkaisut ovat reaaliset? D = (-3a)2 - 4 *1*2a = 9a2 - 8a 9a2 - 8a > 0

Polynomin jakaminen tekijöihin Kertausta 1) a2 + 2ab + b2 = (a + b)2 2) a2 - 2ab + b2 = (a - b)2 3) a2 – b2 = (a + b) (a – b) E.1. Jaa tekijöihin a) x2 + 3x = x(x + 3) b) 6x2 – 8x = 2x(3x – 4) c) 5x3 – 10x2 = 5x2(x – 2) d) x2 + 6x + 9 = (x + 3)2 e) x2 – 2x + 1 = (x – 1)2 f) x2 – 49 =(x + 7)(x – 7)

8.1.2. Korkeamman asteen yhtälöt Tulo on nolla, jos jokin tulon tekijöistä on nolla Merkitse kaikki tulon tekijät = 0 ja ratkaise näin saadut yhtälöt E.2. Ratkaise (x – 2)(x2 – 9) = 0 x – 2 = 0 tai x2 – 9 = 0 x = 2 x2 = 9 x =  3

Tulo = 0, yhteinen tekijä Kaikki termit vasemmalle puolelle Jaetaan tekijöihin Ratkaistaan näin saatu tulo = 0 yhtälö merkitsemällä kaikki tekijät = 0. E.3. Ratkaise x3 – 2x2 – 3x = 0 x(x2 – 2x – 3 ) = 0 x1 = 0 tai x2 – 2x – 3 = 0 x2 = 3, x3 = -1 (RTK-KAAVALLA)

Tulo = 0, ryhmittely Kaikki termit vasemmalle puolelle Ryhmittely, yhteinen tekijä Tekijät = 0 E.4. Ratkaise x3 – 3x2 + x – 3 = 0 (x3 – 3x2) + (x – 3) = 0 x2(x – 3) + (x – 3) = 0 (x2 + 1) (x – 3) = 0 x2 + 1 = 0 tai x – 3 = 0 x2 = -1 x = 3 ei ratkaisua

E.5. (598) a) x4 – 5x2 +4 = 0 b) x4 + 5x2 + 4 = 0

8.2. Korkeamman asteen epäyhtälöt Tulo > 0 ( <, ,  ) Tekijät =0, merkit Lukusuorataulukko Vastauksen päättely

E.6. Ratkaise (x2 – x)(x + 1) > 0 NK: (x2 – x)(x + 1) = 0 TAPA I: (kokeilu) f(x) = (x2 – x)(x + 1) = x3 + x2 – x2 – x = x3 - x -1 1 x f(x) = x3 – x - + - + -2 (-2)3 – (-2) = -6 < 0 -½ (-½)3 – (-½) = 3/8 > 0 ½ (½)3 – ½ = -3/8 < 0 V: -1 < x < 0 tai x > 1 2 23 – 2 = 6 > 0

TAPA II: x(x – 1)(x + 1) > 0 NK: Kuten edellä x1 = 0 x2 = 1 x3 = -1

E.7. Ratkaise 3x3 > 2x2 + x 3x3 - 2x2 – x > 0 x(3x2 – 2x – 1) > 0 NK: x(3x2 – 2x – 1) = 0 x1 = 0 V 3x2 – 2x – 1 = 0 x2 = 1

Yhden ratkaisun etsiminen ”kokeilemalla” Jos huomattu x = a, on tekijänä (x - a) Kaikki termit vasemmalle puolelle Jakamalla vasen puoli yhteisellä tekijällä saat toisen tekijän Näin saat yhtälön tulo = 0, joka ratkaistaan E.4. Ratkaise x3 - 4x2 + 3x + 2 = 0 Kokeilemalla yksi rtk: x = 2

jos x – 3 on tekijänä => 3 on polynomin nollakohta Onko annettu binomi polynomin tekijä? x3 – x2 - 5x – 3, (x – 3) Siis jos x – 3 on tekijänä => 3 on polynomin nollakohta

3x - 4 a) Tapa 1 nk: x = 1 Tapa 2 Ratkaisukaavalla nollakohdat: x -1 tekijänä Tapa 2 Ratkaisukaavalla nollakohdat: 3x - 4 x = 1 tai x = 4/3

663. P(x) = ax3 -31x2 + 1 eräs nollakohta on x = 1. Määritä a. P(1) = 0: a · 13 - 31 · 12 + 1 = 0 a = 30 jakokulmassa

Johdantoesimerkki – kirja sivut 161 -162 E.1. Määritä paraabelin y = x2 – 2x huippu Kuvaaja ”katkoviiva” Paraabelin symmetrisyyden perusteella huipun x-koordinaatti on x-akselin ja paraabelin leikkauspisteiden keskiarvo y sijoittamalla: y = 12 - 2·1 = -1 Huippu: (1, -1) E.2. Määritä paraabelin y = x2 – 2x + 2 huippu Kuvaaja: 2 yksikköä ylöspäin Huipun x – koordinaatti pysyy samana Huipun y-koordinaatti kasvaa 2:lla Huippu (1, 1)

7.1.4. Paraabelin y= ax2 + bx + c huipun määrittäminen -Käytetään hyväksi paraabelia y = ax2 + bx: lasketaan nollakohdat ax2 + bx = 0 huipun x koordinaatti on nollakohtien keskiarvo huipun y-koordinaatti saadaan sitten sijoittamalla huipun x-korrdinaatti paraabelin yhtälöön

E.1. Määritä paraabelin huippu a) y = 3x2 - 4x b) y = x2 - 6x + 5 a) 3x2 – 4x = 0 x(3x – 4) = 0 x1 = 0 tai 3x – 4 = 0 3x = 4 x2 = 4/3 b) x2 – 6x = 0 x(x – 6) = 0 x1 = 0 tai x – 6 = 0 x2 = 6 V: Huippu on V: Huippu on

7.2.1. Neliöksi täydentäminen ks. kirja sivut 165 - 166 E.1. Ratkaise x2 – 2x + 1 = 9 (x – 1)2 = 32 x - 1 = 3 tai x – 1 = -3 x = 4 tai x =-2

E.2. Ratkaise x2 – 6x + 5 = 0 x2 – 6x = -5 x2 – 6x + 32 = -5 + 32 x - 3 = 2 tai x – 3 = -2 x = 5 tai x = 1 (a – b)2 = a2 -2ab + b2

E.3. Ratkaise 16x2 + 24x - 16 = 0 16x2 + 24x = 16 (4x)2 + 2 · 3 ·4x = 16 (4x)2 + 2 · 3 ·4x + 32 = 16 + 32 (4x)2 + 2 · 3 ·4x + 32 = 25 (4x + 3)2 = 25 (4x + 3)2 = 52 4x + 3 = 5 tai 4x + 3 = -5 x = ½ tai x = -2 (a + b)2 = a2 + 2ab + b2

Kerrotaan puolittain luvulla 4a 4a2x2 + 4abx + 4ac =0 7.2.2. Ratkaisukaava. kirja s. 166 ax2 + bx + c = 0 Kerrotaan puolittain luvulla 4a 4a2x2 + 4abx + 4ac =0 4a2x2 + 4abx = -4ac (2ax)2 + 2 ·b · 2ax = -4ac (2ax)2 + 2 ·b · 2ax + b2 = -4ac + b2 (2ax)2 + 2 ·b · 2ax + b2 = b2 – 4ac Merkitään: b2 – 4ac = D (2ax + b)2 = D (a + b)2 = a2 + 2ab + b2