3.2. Ensimmäisen asteen polynomifunktio

Slides:



Advertisements
Samankaltaiset esitykset
Yleistä Läsnäolovelvollisuus Poissaolojen selvitys Käyttäytyminen
Advertisements

Lineaarinen riippuvuus
MB 3 Lineaarisia polynomifunktioita
Polynomifunktiot MA 02 Läsnäolovelvollisuus Poissaolojen selvitys
MAB8: Matemaattisia malleja III
@ Leena Lahtinen Helia Ohjelman perusrakenteet 1. PERÄKKÄISRAKENNE 2. VALINTARAKENNE 3. TOISTORAKENNE.
Funktiot ja yhtälöt MA 01 Läsnäolovelvollisuus 100 %
Yhtälön ratkaiseminen
Lineaarisia malleja.
5.1. Tason yhtälö a(x – x0) + b(y – y0) + c(z – z0) = 0
Analyyttinen geometria MA 04
MAA0 LUKUALUEET Luonnolliset luvut N = 0,1,2,3,…
Nopeus s t v nopeus = matka: aika v = s :t
Iitin yläkoulu 9. Luokka Antti Halme
Iitin yläkoulu 9. Luokka Antti Halme
Numeerisia ja algebralllisia menetelmiä MA 12
Derivaatta MA 07 Derivaatta tarkoittaa geometrisesti käyrälle piirretyn tangentin kulmakerrointa.
Valitse seuraaviin vaihtoehtotehtäviin oikea vastaus…
KERTAUSTA PERUSASTEEN MATEMATIIKASTA Piia junes
Prosenttilaskua, tiivistelmä
1.5. Trigonometriset yhtälöt
LOGARITMI Eksponenttiyhtälön 10x = a ratkaisua sanotaan luvun a logaritmiksi Merkintä x = lga Huom. vain positiivisilla luvuilla on logaritmi.
TMA.003 / L3 ( )1 3. Funktioista 3.1. Kuvaus ja funktio Olkoon A ja B ei-tyhjiä joukkoja. Tulojoukon A  B = {(x,y) | x  A, y  B} osajoukko on.
3. Funktioista 3.1. Kuvaus ja funktio
RSA – Julkisen avaimen salakirjoitusmenetelmä Perusteet, algoritmit, hyökkäykset Matti K. Sinisalo, FL.
1.2.1 KÄÄNTEISFUNKTIO JA SEN KUVAAJA
1.1. Itseisarvo * luvun etäisyys nollasta E.2. Poista itseisarvot
1.a) f(x) = 2x(x2 – 3) = 0 2x = tai x2 – 3 = 0 x = tai x2 = 3
2) Kuinka monta prosenttia luku a on luvusta b
TÄRPPEJÄ – YO 2010 PITKÄ MATEMATIIKKA.
LINEAARINEN MUUTOS JA KULMAKERROIN
Pienin ja suurin arvo suljetulla välillä
Raja-arvon määritelmä
Aritmeettinen jono jono, jossa seuraava termi saadaan edellisestä lisäämällä sama luku a, a + d, a+2d, a +3d,… Aritmeettisessa jonossa kahden peräkkäisen.
Aritmeettinen jono jono, jossa seuraava termi saadaan edellisestä lisäämällä sama luku a, a + d, a+2d, a +3d,… Aritmeettisessa jonossa kahden peräkkäisen.
2.4. Raja-arvo äärettömyydessä ja raja-arvo ääretön E.1.
Yhtälön ja epäyhtälön korottaminen neliöön Olkoon a, b  0. Tällöin a = b  a 2 = b 2, a < b  a 2 < b 2.
Murtoyhtälöt - Yhtälö, jossa nimittäjässä tuntematon
1. Usean muuttujan funktiot
Vektorin komponentit 2 vektoria määrittävää tason, kun E.1.
PARAABELI (2. ASTEEN FUNKTION KUVAAJIA)
1.4. Integroimismenetelmiä
KESKIVIIKKO KOTITETEHTÄVÄT. Siis suorat ovat kohtisuorassa toisiaan vastaan.
Kymmenkantainen logaritmi
Suoran yhtälön muodostaminen
2.1.2 Tason vektori koordinaatistossa
Liike Nopeus ja kiihtyvyys.
Juurifunktio potenssifunktion käänteisfunktiona
Funktio.
Paraabelin huippu Paraabelin huippu
Suora Suorien leikkauspiste Yhtälöparin ratkaisu
3.3. Käyrän tangentti ja normaali
3.1. SOVELLUKSIA, pinta-ala
Neperin luku e ja funktio y = ex
Suorien leikkauspiste
#perjantaipähkinä Ettei menisi ”äksät” sekaisin, miettikää seuraavat tutumman kautta: a)2 metriin lisätään 3 metriä, saadaan… b)Samalla idealla.
#perjantaipähkinä
Funktio ja funktion kuvaaja
MAB3 suorat.
TMA.003 / L3 ( ) I asteen yhtälö Perusaskeleet: (1) termi saa vaihtaa puolta, jos se samalla vaihtaa merkkiä 5x = 4x + 2  5x – 4x = 2 (2)
Funktion kuvaajan piirtäminen
TANGENTTI Suora, joka sivuaa käyrää.
LUKUSUORA JA LUKUVÄLIT
Mitä osattava (minimivaatimus)?. Yhtälöiden ja epäyhtälöiden ratkaiseminen –Huom! Määrittelyehdot Peruslaskutoimitukset –polynomien erityisesti binomin.
MATEMAATTISIA MALLEJA I Mab 3 Meri Sirkeinen Siikajoen lukio.
Syventävä matematiikka 2. kurssi
Suoran yhtälön muodostaminen, kun suoralta tunnetaan 2 pistettä
k-kantaisen eksponenttifunktion ominaisuuksia
YHTÄLÖPARI 1.1. Yhtälöparin ratkaiseminen piirtämällä
Kertausta FUNKTIOISTA MAB5-kurssin jälkeen (Beta 2.0)
Esityksen transkriptio:

3.2. Ensimmäisen asteen polynomifunktio E.2. Laske funktion f(x) = 4x - 3 arvo, kun x = 2 f(2) = 4 · 2 - 3 = 5

3.2.2 Funktion määrittelyjoukko (MJ) Ne muuttujan arvot, joilla funktion arvot voidaan laskea E.4. Mikä on funktion määrittelyjoukko, kun a) f(x) = x + 1 b) c) a) R b) x ≥ 0 c) x ≠ 1

E.5. Piirrä funktion f(x) = x + 1 kuvaaja b) Määritä funktion nollakohta x + 1 = 0 x = -1

Lineaarinen funktio y = kx + b Kuvaaja on suora k = kulmakerroin jos k > 0, niin suora on nouseva jos k < 0, niin suora on laskeva jos k = 0, niin suora on x-akselin suuntainen ilmoittaa myös jyrkkyyden b = vakiotermi suoran ja y-akselin leikkauspisteen y-koordinaatti

E.7. Suorien yhtälöt ovat 6x + 2y = 2 ja 2x + 4y - 4 = 0. a) Määritä suorien kulmakertoimet b) Ovatko suorat nousevia vai laskevia c) Kumpi suora on jyrkempi a) 2y = -6x + 2 4y = -2x + 4 y = -3x + 1 y = -½ x + 1 k = -3 k = -½ b) laskevia, koska k < 0 c) y = -3x + 1 on jyrkempi

Kirjan esimerkki 3, s. 75 Määritä pisteiden (-1, 1) ja (2, 0) kautta kulkevan suoran yhtälö. Suoran yhtälö muotoa y = kx + b Suoralla olevat pisteet toteuttavat yhtälön: 1 = -k + b 0 = 2k + b 3k = -1 k = -1/3 sijoitus: 2*(-1/3) + b = 0 b = 2/3

E.1. Ratkaise yhtälöpari y sijoittamalla: 4·½ + 2y = 7 2y = 7 – 2 | 3 | (-2) 2x = 1 x = ½ V: x = ½, y =2½ Tarkistus: 4 ½ + 2  2½ = 7 ./. 5 ½ + 3  2½ = 10 ./.

5x = -5 x = -1 E.2. Ratkaise yhtälöpari T1 y sijoittamalla: V: x = -1, y = -2

T.2. Ratkaistaan ensin y: 2x – y = 0 y = 2x Sijotetaan alempaa yhtälöön: 3x + 2x + 5 = 0 5x = – 5 x = -1 y sijoittamalla: y = 2  (-1) = – 2 V: x = -1, y = -2

T.3. Ratkaistaan ensin molemmista y: 2x – y = 0 y = 2x 3x + y + 5 = 0 y = -3x – 5 Merkitään y:n lausekkeet yhtä suuriksi: 2x = -3x – 5 2x + 3x = -5 5x = -5 x = -1 y sijoittamalla: y = 2  (-1) = – 2 V: x = -1, y = -2

E.3. Ratkaise E.2. graafisesti 2x – y = 0 y = 2x 3x + y + 5 = 0 y = -3x – 5 V: x = -1, y = -2 Huom: Aina likiarvo! Laske aina, jos ei nimenomaan pyydetä graafista ratkaisua

V: Yhtälöllä ei ole ratkaisua E.5. Ratkaise yhtälöpari | (-2) | 1 -21 = 0 epätosi V: Yhtälöllä ei ole ratkaisua

V: Kaikki suoran x – 2y + 1 = 0 pisteet E.6. Ratkaise yhtälöpari 0 = 0 tosi V: Kaikki suoran x – 2y + 1 = 0 pisteet

Sijoittamalla: *) x + 3 = 8 x = 8 – 3 x = 5 V: 5 kanaa ja 3 kania * Yhtälöparin sovelluksia E.1. Kuinka monta kanaa ja kania on miehen säkissä, kun päitä on yhteensä 8 ja jalkoja 22? x = kanojen lkm y = kanien lkm Sijoittamalla: *) x + 3 = 8 x = 8 – 3 x = 5 V: 5 kanaa ja 3 kania * | (-2) | 1 2y = 6 | :2 y = 3

Reaalilukuvälit E.2. Esitä epäyhtälöin väli a) 1,4 b) ]0,3] c) [-2,  [ a) 1 ≤ x ≤ 4 b) 0 < x ≤ 3 c) x ≥ -2 E.3. Esitä hakasuluin väli a) 6 < x < 8 b) 4  x < 10 c) x < 4 a) ]6, 8[ b) [4, 10[ c) ]- ∞, 4[

EPÄYHTÄLÖN RATKAISEMINEN E.4. Ratkaise epäyhtälö a) 3x + 2 < x + 8 b) 2x – 3 < 4x + 5 a) 3x + 2 < x + 8 3x – x < 8 – 2 2x < 6 x < 3 b) 2x – 3 < 4x + 5 2x – 4x < 5 + 3 -2x < 8 x > -4

E.5. a) b) x(x – 4) < (x – 5)(x+1) x2 – 4x < x2 + x – 5x – 5 | *4 x2 – 4x < x2 + x – 5x – 5 x2 – 4x – x2 – x + 5x < -5 0 < -5 epätosi V: ei ratkaisua 2x < 2x + 1 2x -2x < 1 0 < 1 tosi x  R

Kaksoisepäyhtälö 1. ”JA”-ryhmän ratkaiseminen Ratkaise JA sanan molemmilla puolilla olevat epäyhtälöt Merkitse kummankin epäyhtälön ratkaisujoukot lukusuorataulukkoon omille riveilleen. Ratkaisujoukko (omalle riville) on näiden leikkausjoukko ts. alue, missä molemmat epäyhtälöt toteutuvat Ratkaise a) 2x > 2 ja x - 4 < 0 2x > 2 | :2 x > 1 V: 1 < x < 4 x - 4 < 0 x < 4 -2 -1 0 1 2 3 4 5 6 7 8

a < b < c a < b JA b < c Kaksoisepäyhtälön hajotus osaepäyhtälöiksi a < b < c  a < b JA b < c Esimerkki x - 3x < 0 < 1 - x x - 3x < 0 JA 0 < 1 - x -2x < 0 x < 1 x > 0 Lukusuoralle ”leikkausalue” on vastaus V: 0 < x < 1 -2 -1 0 1 2 3 4 5 6 7 8

Eksponenttifunktio y = kx Kuvaaja on koko ajan x-akselin yläpuolella, kulkee pisteen (0,1) kautta (k > 0) Määrittelyjoukko on koko R Arvojoukko on R+ eli positiivisten reaalilukujen joukko kx on kasvava, jos k > 1 ELI kantaluku on > 1 kx on vähenevä, jos 0 < k < 1 eli kantaluku välillä ]0,1[ kx on vakiofunktio, jos k = 1

Eksponenttiyhtälöitä Yhtälö, jossa kaksi termiä ja sama kantaluku Siirrä termit eri puolelle yhtälöä kx = ky  x = y Esimerkki 3x = 9 3x = 32 x = 2 7x-3 = 49x 7x-3 = (72)x 7x-3 = 72x x - 3 = 2x x = -3

Eksponenttiepäyhtälöitä Epäyhtälö, jossa kaksi termiä ja sama ykköstä suurempi kantaluku Siirrä termit eri puolille epäyhtälöä. kx < ky  x < y (kun k > 1) Epäyhtälö, jossa kaksi termiä ja sama ykköstä pienempi kantaluku Muuten samoin kuin yllä, mutta Käytä sääntöä kx < ky  x > y (kun 0 < k < 1) Esimerkki 3x > 81 3x > 34 x > 4 4x-1 < 8 (22)x -1 < 23 22(x - 1) < 23 2(x - 1) < 3  2x - 2 < 3  2x < 5  x < 2,5

Esimerkki Bakteerikanta kolminkertaistuu tunnissa Jos kannan suuruus nyt on 25 miljardia Kuinka paljon bakteereja on a) Neljän tunnin kuluttua b) Neljä tuntia sitten c) Puoli tuntia sitten a) 34 * 25 = 2000 (miljardia) b) 3-4 * 25 = 0,31 (miljardia) c) 3-0,5 * 25 = 14 (miljardia)

Esimerkki Radioaktiivisen aineen määrä pienenee kahdeksassa päivässä neljännekseen alkuperäisestä. Kuinka monta prosenttia aineesta hajoaa vuorokaudessa? a = alkuperäinen määrä k8 * a = 0,25a k8 = 0,25 Vuorokaudessa aineen määrä tulee 0,84-kertaiseksi eli aineesta hajoaa 16%

POLYNOMIT E.1. Mitkä ovat polynomin P(x) = 5x3 – 2x + a a) termit b) termien kertoimet c) asteluku d) Onko polynomi monomi, binomi vai trinomi? a) 5x3, -2x ja a (vakiotermi) b) 5, -2, a c) 3 d) trinomi

E.2. Polynomin 2x + 1 aste on 1 kuvaaja on suora E.3. Polynomin x2 – 1 aste on 2 kuvaaja on paraabeli

POLYNOMIN ARVON LASKEMINEN Sijoitetaan muuttujan paikalle se luku, jolla polynomin arvoa ollaan laskemassa E.4. Laske P(1), P(-2) kun a) P(x) = x2 – 2 b) P(x) = -x2 + 2x + a a) P(1) = 12 – 2 = -1 P(-2) = (-2)2 – 2 = 4 – 2 = 2 b) P(1) = -12 + 2· 1 + a = -1 + 2 + a = 1 + a P(-2) = -(-2)2 + 2 · (-2) + a = -4 – 4 + a = -8 + a

E.5. a) Millä x:n arvolla P(x) = 2x – 4 saa arvon 6 b) Ratkaise yhtälö P(x) = 0, kun P(x) = 2x + 1 a) P(x) = 6: 2x – 4 = 6 2x = 10 x = 5 b) P(x) = 0 2x + 1 = 0 2x = -1 x = -½

POLYNOMIN YHTEEN- JA VÄHENNYSLASKU E.7. Laske a) 4x3 + 3x3 = 7x3 b) 7x3 + 3x2 – 2x2 = 7x3 + x2 c) 4x3 – 2x2 + 1 + 4x2 –3x3 –2 = x3 + 2x2 - 1

E.8. Määritä polynomin P(x) = -x2 – 5x + 2 vastapolynomi -P(x) = -(-x2 – 5x + 2) = x2 + 5x - 2 E.9. Laske polynomien p(x) = 3x2 – 2x + 1 ja q(x) = -x2 + 2x – 1 erotus p(x) – q(x) = (3x2 – 2x + 1) – (-x2 + 2x – 1) = 3x2 – 2x + 1 + x2 – 2x + 1 = 4x2 – 4x + 2

POLYNOMIEN KERTOLASKU E.10. Laske a) –3x2  4x3 = -12x5 b) 4  5x - 10x = 20x – 10x = 10x c) 4(3x – 2) =12x - 8 d) 4x(2x + 2) =8x2 + 8x e) (2x – 1) (3x + 2) =6x2 + 4x – 3x – 2 = 6x2 + x - 2

POLYNOMIN JAKAMINEN MONOOMILLA Jokainen polynomin termi jaetaan monomilla E.11. Laske

Tekijöihin jako Esimerkkejä Jaa tekijöihin 6x + 12 =6(x + 2) 4x2 - 12x =4x(x -3)

5.2. Binomin laskusääntöjä 5.2.1. Summan ja erotuksen tulo (a + b)(a – b) = a2 – b2 E.1. a) (x + 2) (x – 2) = x2 – 22 = x2 – 4 b) (y - 4) (y + 4) = y2 – 42 = y2 - 16 c) (3x - 5) (3x + 5) = (3x)2 – 52 = 9x2 - 25 d) (x2 + 3) (x2 – 3) = (x2)2 – 32 = x4 - 9 e) (3 + x) (x – 3) = (x + 3)(x – 3) = x2 - 9 f) 4(x + 1) (x – 1) = 4(x2 – 1) = 4x2 - 4

a2 – b2 = (a+b)(a – b) E.2. Jaa tekijöihin a) x2 – 9 = x2 – 32 = (x + 3)(x -3) b) 4x2 – 25 = (2x)2 – 52 = (2x – 5)(2x + 5) c) x4 – 4x2 = x2(x2 -4) = x2(x + 2)(x – 2)

E.3. Poista neliöjuuret nimittäjästä

BINOMIN NELIÖ (a + b)2 = a2 + 2ab + b2 (a - b)2 = a2 - 2ab + b2 E.4. a) ( x + 3)2 = x2 + 2  x  3 + 32 = x2 + 6x + 9 b) ( x - 4)2 = x2 - 2  x  4 + 42 = x2 - 8x + 16 c) (3 x + 1)2 = (3x)2 - 2 3x  1 + 12 = 9x2 - 6x + 1 d) ( - ½x + 5)2 = (5 - ½x)2 = 52 - 2  5  ½x + (½x)2 = 25 - 5x + ¼ x2 = ¼ x2 – 5x +25 BINOMIN NELIÖ (a + b)2 = a2 + 2ab + b2 (a - b)2 = a2 - 2ab + b2

a2 + 2ab + b2 = (a + b)2 a2 - 2ab + b2 = (a - b)2 E.5. Jaa tekijöihin esittämällä binomin neliönä a) x2 + 8x + 16 = x2 + 2  x  4 + 42 = (x + 4)2 b) x2 + 20x + 100 = x2 + 2  x  10 + 102 = (x + 10)2 c) 4x2 + 12x + 9 = (2x)2 + 2 2x  3 + 32 = (2x + 3)2

Neliöjuuren määritelmän käyttöä Luvun a neliöjuuri: Osoita likiarvoja käyttämättä, että > 0 i) ii) = juurrettava i) & ii) => väite

6.1.1. Polynomifunktion perusmuoto E.1. p(x) = (x – 3)(3x – 4)2(x + 3) = (x – 3) (x + 3)(3x – 4)2 = (x2 – 9)(9x2 – 24x + 16) = 9x4 – 24x3 + 16x2 - 81x2 + 216x -144 = 9x4 – 24x3 - 65x2 + 216x -144 (perusmuoto) asteluku: 4 aste myös: 1 + 2 + 1 = 4 laskemalla yhteen tulon tekijöiden asteet

6.1.2 Polynomifunktion tutkiminen graafisesti f(x) = x – 1 g(x) = –x2 + 2x + 1 a) g(x) = -2 x = -1 ja x = 3 b) f(x) = g(x) x = -1 ja x = 2 c) f(x) < 2 x < 3 -1 ≤ x ≤ 2 d) g(x) ≥ f(x)

6.1.3. Polynomifunktio matemaattisena mallina E.1. Tuotteiden hinta riippuu lineaarisesti niiden hinnasta Kuukausittainen menekki astioille kuukaudessa: Yksikköhinta menekki 10 150 15 110 a) f, joka ilmoittaa astioiden menekin hinnasta f(x) = kx + b f(10) = 150 f(15) = 110 (-1) b) Mikä on funktion määrittelyehto Hinta positiivinen => x > 0 Menekki positiivinen: -8x + 230 > 0 -8x > -230 x < 28,75 0 < x < 28,75 5k = -40 k = -8 10(-8) + b = 150 b = 230 f(x) = -8x + 230

c) Millä hinnalla menekki on 180? -8x + 230 = 180 -8x = 180 – 230 -8x = -50 x = 6,25 V: yksikköhinta 6,25 € d) Kuvaaja