Alkuaineiden jaksollinen järjestelmä

Slides:



Advertisements
Samankaltaiset esitykset
Molekyylien sidokset Juha Taskinen
Advertisements

Metallit Kuva :
Alkuaineiden jaksollinen järjestelmä
Metallien reaktiot.
Metallien reaktiot.
Atomin rakenteesta videohttp://oppiminen.yle.fi/artikkeli?id=2222.
Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012
Hapot Kaikki hapot sisältävät vetyä. Happoja: suolahappo HCl
1. Malmista metalliksi Yleensä metallit esiintyvät erilaisissa yhdisteissä eli mineraaleissa Esim. Hematiitti (Fe2O3) ja kuparihohde (Cu2S) Jalot metallit.
Kemia, luento1 lisämateriaalia
Alkuaine, yhdiste vai seos?
Atomit Molekyylit Sidokset Poolisuus Vuorovaikutukset
Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012
Kemia on sähköä Kemiallisia reaktioita, joissa elektroneja siirtyy kutsutaan hapetus-pelkistysreaktioiksi (tai redox-reaktioiksi) Kun alkuaine luovuttaa.
Ammattikemia Terhi Puntila
Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2014
Kemiallista kielioppia!
Kemiallinen sitoutuminen
Vety on jaksollisen järjestelmän ensimmäinen alkuaine
HIILI Hiili on yleinen epämetalli, neliarvoinen alkuaine, jolla on myös useita allotrooppisia muotoja. Sen kemiallinen me rkki on C (lat. carbonium) ja.
4. Metallien sähkökemiallinen jännitesarja
EPÄORGAANINEN KEMIA.
Vedenlaadun jatkuvatoiminen monitorointi Mika Mahosenaho, CTO MEOLINE OY Teknologiapuisto, Kajaani, FI.
KE2 Jaksollinen järjestelmä ja sidokset. 13. Jaksollinen järjestelmä Alkuaine on aine, joka koostuu atomeista, joilla on sama protonien määrä Alkuaine.
2.2 IONISIDOS IONISIDOKSEN MUODOSTUMINEN Metalleilla on pieni elektronegatiivisuus, joten ne luovuttavat ulkoelektroninsa epämetalleille, joiden elektronegatiivisuus.
Luku 2: Atomisidokset ja ominaisuudet
2. Jaksollinen järjestelmä
III VAHVAT SIDOKSET Ionisidos Metallisidos Kovalenttinen sidos
Ionisidokset Seppo Koppinen 2016.
Lukion kemia 3, Reaktiot ja energia
1. Malmista metalliksi Yleensä metallit esiintyvät erilaisissa yhdisteissä eli mineraaleissa Esim. Hematiitti (Fe2O3) ja kuparihohde (Cu2S) Jalot metallit.
MONIPUOLINEN HIILI Elollisen luonnon molekyylien runkoalkuaine on hiili. Sillä on kaksi ominaisuutta, jotka tekevät siitä alkuaineiden joukossa poikkeuksellisen:
SIDOKSEN POOLISUUS Tarkoittaa sidoselektronien epätasaista jakautumista Sidos on pooliton, jos sitoutuneet atomit vetävät yhteisiä elektroneja yhtä voimakkaasti.
III VAHVAT SIDOKSET Ionisidos Metallisidos Kovalenttinen sidos
Jaksollinen järjestelmä
Miksi metaanin eli maakaasun kiehumispiste (–162 °C) on huomattavasti alhaisempi kuin veden kiehumispiste (100 °C)? Miksi happi ja vety ovat kaasuja,
IV HEIKOT SIDOKSET 14. Molekyylien väliset sidokset
1.1 ATOMIN RAKENNE Mallintaminen. 1.1 ATOMIN RAKENNE Mallintaminen.
Tiivistelmä 5. Alkuaineet
Atomin rakenne 8Ke.
Kovalenttinen sidos ja metallisidos
Alkuaineiden jaksollinen järjestelmä
Kemialliset yhdisteet
Rakennekaavoja.
Elektroniverho eli elektronipilvi energiatasot eli elektronikuoret
Kovalenttinen sidos ja metallisidos
Kemialliset sidokset – vahvat ja heikot
II ATOMIN RAKENNE JA JAKSOLLINEN JÄRJESTELMÄ
Kiteiset ja amorfiset aineet
Tiivistelmä 3. Jaksollinen järjestelmä
II ATOMIN RAKENNE JA JAKSOLLINEN JÄRJESTELMÄ
III VAHVAT SIDOKSET Ionisidos Metallisidos Kovalenttinen sidos
III VAHVAT SIDOKSET Ionisidos Metallisidos Kovalenttinen sidos
Jaksolliset ominaisuudet
Sähkökemiaa Ioniyhdiste (suola) koostuu ioneista.
Kaikenlaisia sidoksia: ioni-, kovalenttiset ja metallisidokset
Ionisidos Ionisidos syntyy kun metalli (pienempi elektroneg.) luovuttaa ulkoelektronin tai elektroneja epämetallille (elektronegatiivisempi). Ionisidos.
Kvanttimekeaaninen atomimalli
Jaksollinen järjestelmä
Kemialliset sidokset Metallisidos
Kovalenttinen sidos Kovalenttinen sidos muodostuu epämetallien välille. Molemmat epämetalliatomit luovuttavat sidokseen yhden , kaksi tai kolme elektronia,
Elinympäristömme alkuaineita
Tehtävä 87 Tutki, millä seuraavista yhdisteistä on eniten ioniluonnetta: vetyfluoridi, natriumfluoridi,alumiinifluoridi. Perustele. Millä sidoksilla atomit.
Jaksollinen järjestelmä ja alkuaineet
Muutokset atomin elektronirakenteessa
Kertauskirja kpl 2, 3, 4.
Kemiallinen merkki   59Co3+ protonit neutronit elektronit
1. Atomi Massaluku kertoo protonien ja neutronien yhteismäärän.
3. Ionisidos Alkuaineet pyrkivät oktettiin (8 ulkoelektronia).
Titel: Quelle: Übungsart: Titel: Quelle: Silben 2 Buchstaben
Esityksen transkriptio:

Alkuaineiden jaksollinen järjestelmä Alkuaineen kemialliset ominaisuudet mää- räytyvät sen ulkokuoren elektronirakenteesta. Seuraus: Samanlaisen ulkokuorirakenteen omaavat alkuaineen ovat kemiallisesti sukulaisia

Alikuoret eli orbitaalit Tanskalaisen Nils Bohrin 1900 -luvun alussa esittämän mallin mukaan elektronien tilaa atomissa kuvaa 4 kvanttilukua: pääkvanttiluku n=1,2,3,4,… sivukvanttiluku l = 0,…,n-1 magneettinen kvanttiluku m = 0, +-1,…, +- l spinkvanttiluku s = 1/2 , -1/2 Edelleen atomilla voi olla kutakin näiden neljän kvantti- luvun yhdistelmää vastaavassa tilassa vain yksi elektroni.

Esim. 3. kuorella (n=3) voi olla seuraavia kvanttilukuyhdistelmiä: l = 0 , m=0 , 2 elektronia (s=1/2 tai -1/2) l=1, m= 0, 2 el. m= -1 , 2 el. m = +1 , 2 el. l=2 m= 0 , el. m= -1 , el. m= -2 , el. m= 1 , el. m = 2 , el. 10e 6e 2e 3. kuoren hienorakenne

L:n arvoja 0, 1, 2 ,3 vastaavia tiloja sanotaan alikuoriksi eli orbitaaleiksi ja niitä merkitään s,p,d,f,… s -orbitaaleille mahtuu 2 elektronia (m=0) p-orbitaaleille mahtuu 6 el. (m=0,+-1) d-orbitaaleille mahtuu 10 el. (m=0,+-1,+-2) Lisäksi kuoret ja orbitaalit täyttyvät seuraavan kaavion mukaisessa järjestyksessä.

Orbitaalien täyttymisjärjestys 2p 2p 2p 3s 3p 3p 3p 3d 3d 3d 3d 3d 4s 4p 4p 4p 4d 4d 4d 4d 4d 5s 5p 5p 5p 6s Jokaiseen neliöön mahtuu 2 elektronia

1s 2s 2p 2p 2p 3s 3p 3p 3p 3d 3d 3d 3d 3d 4s 4p 4p 4p 4d 4d 4d 4d 4d Teht. Määritä alkuaineen nro 20 (Kalsium) elektronirakenne 1s 2s 2p 2p 2p 3s 3p 3p 3p 3d 3d 3d 3d 3d 4s 4p 4p 4p 4d 4d 4d 4d 4d 5s 5p 5p 5p Uloimmalla (4.) kuorella on 2 elektronia, Ca kuuluu pääryhmään 2 6s

Oktettisääntö Ulkokuoren rakenne, jossa ulkokuorella on 2 kpl s-, ja 6 kpl p-elektroneja = yht. 8 elektronia on erityisen pysyvä. Sitä sanotaan oktetiksi. Alkuaineet muodostavat yhdisteitä usein siten, että ne pääsevät oktettirakenteeseen. Esim. kun Na luovuttaa 1 elektronin, sille jää oktetti. Kun kloori Cl vastaanottaa elektronin, sille tulee oktetti. Siispä Natrium luovuttaa elektronin kloorille ja syntyy NaCl - molekyyli.

Alkuaineiden pääryhmät 1A Alkalimetallit - ulkokuoren rakenne : 1kpl S -elektroneja * 1 H vety , 3 Li litium , 11 Na (natrium) 19 K (kalium) , 37 Rb (rubidium), 55 Cs (cesium) , 87 Fr (frankium) * Atomit pyrkivät oktettiin luovuttamalla 1 elektronin * Ionivaraus +1: H+, Li+, Na+,- - - * erittäin reaktioherkkiä metalleja * vesiliuokset emäksisiä

2A Maa-alkalimetallit * ulkokuoren rakenne 2 s -elektronia * Be, Mg, Ca, Sr, Ba, Ra * pyrkivät luovuttamaan 2 elektronia * ionivaraus +2 3B Booriryhmä * ulkokuorella 3 elektronia (2s + 1p) * B, Al , Ga, In, Tl * luovuttavat useimmiten 3 elektronia * ionivaraus + 3 4B hiiliryhmä (ulkokuorella 4 elektronia: 2s+2p) * C, Si, Ge, Sn, Pb * luovutettujen el. määrä vaihtelee * sisältää sekä epämetalleja ja metalleja

5B typpiryhmä * ulkokuoren rakenne 2 s+3p= yht. 5 elektronia * N, P, As, Sb, Bi * epämetalleja 6B Happiryhmä * ulkokuorella 6 elektronia = 2 vaille oktetti * O, S, Se, Te, Po * saavuttavat oktetin ottamalla vastaan 2 elektronia * ionivaraus -2 7B halogeenit (ulkokuorella 7 el. = 1 vaille oktetti) * F, Cl, Br, I ja At * epämetalleja, ionivaraus -1 * erittäin aktiivisia 0 jalokaasut (He, Ne, Kr, Ar, Xe, Rn) * ovat jo oktetissa , täysin passiivisia

Väliryhmät Täyttymisjärjestyskaaviosta nähdään,että esim. 4. Kuorella täytyy s -tilojen jälkeen edellisen 3.kuoren d-tilat . 4. Kuoren täyttyminen jatkuu vasta tämän jälkeen. Näiden 10 alkuaineen kohdalla ulkokuoren rakenne on sama. Aineet ovatkin kohtalaisen lähellä toisiaan kemiallisesti. (21 -30, 39-48,...). Näihin ns. Väliryhmiin sijoittuu kaupallisesti tärkeitä metalleja: Fe, Ni, Cu, Au, Ag,...

Metallit ja epämetallit le- ja Epäme- talleja B Al metalleja Puoli- metalleja

Sidostyypit Ionisidos Kovalenttinen sidos Poolinen sidos Metallisidos Ks. Maol:n taulukko: Alkuaineiden elektronegatiivisuudet Elektronegatiivisuus = atomin kyky vetää puoleensa elektroneja

Ionisidos - Esim. NaCl -kide + - - + + * Esiintyy, kun atomien elektronegatiivisuus- ero on suuri ( >1.7) * Elektronegatiivisempi alkuaine riistää elektronin toiselta alkuaineelta. Syntyy posit. ioni eli kationi ja neg. ioni eli anioni. * Kationit ja anionit ryhmittyvät kiteeksi * Yhdisteitä kutsutaan suoloiksi. * tyypillistä kovuus, korkeat sulamispisteet johtuen suurista sähköisistä voimista.Olomuoto kiinteä. - Esim. NaCl -kide + - - + +

Kovalentti sidos Cl2 -molekyyli Cl Cl * Esiintyy, kun atomien elektronegatiivisuus- ero on pieni (<=0.5) * Kaksi alkuainetta voivat päästä oktettiin siirtämällä elektroneja yhteiskäyttöön. Esim. 2 klooriatomia : Cl2 -molekyyli Yhteinen elektronipari merk. Cl-Cl Cl Cl

O2 -molekyyli O O Molekyylien välisiä voimia ei ole, joten olomuoto on usein kaasu. Jos yhteisiä elektronipareja on 2 kpl on kyseessä kaksoissidos.(jos 3 kpl, kolmoissidos) Huom! Kaikki muut kaasut paitsi jalokaasut esiintyvät 2 atomin molekyyleinä: H2, N2, O2 … O2 -molekyyli 2 yhteistä elektroniparia merk. O=O O O

Poolinen sidos + - + - + + - + - + * elektronegatiivisuusero välillä 0.5 - 1.7 Yhteinen elektronipari on lähempänä elektro- negatiivisempaa atomia. Molekyylille tulee tällöin + ja - napa eli siitä tulee dipoli. Molekyylit pitävät kiinni toisistaan sähköisillä voimilla muodostaen ketjuja. Olomuoto on usein neste. Esim. Vesi H2O Kuvassa vesimolekyylejä ketjuuntuneena. + - + - + + - + Happi vety - +

Metallisidos Metalliatomien välillä oleva sidos poikkeaa edellisistä, eikä selity elektronegatiivisuudella. * Atomit ovat järjestyneet kidetasoihin. Niiden etäisyydet määräytyvät sähköisillä jousivoimiin verrattavilla sidoksilla. * ulkoelektronit eivät kuulu millekään atomille, vaan pääsevät vapaasti liikkumaan kiteessä * ominaista kovuus, hyvä lämmön- ja sähkön- johtokyky

Tehtävä Määritä sidostyyppi: CO2 H Cl N2 H2S Cu