Metallurgiset prosessit ja niiden mallinnus Torstai klo 8-10

Slides:



Advertisements
Samankaltaiset esitykset
Puolijohteet mrahikka hyl 2011.
Advertisements

Ilmiömallinnus prosessimetallurgiassa Syksy 2013 Teema 2 - Luento 2
Metallit Kuva :
KEMIKAALIN AIHEUTTAMAT VAARATEKIJÄT 2
Metallien reaktiot.
Metallien reaktiot.
BIOCLEANER Mullistava jäteveden puhdistusmenetelmä.
Korroosiomaalauksen perusteet
Seokset ja liuokset 1. Seostyypit Hapot, emäkset ja pH
Hapot Kaikki hapot sisältävät vetyä. Happoja: suolahappo HCl
Metallien kierrätys.
4. Runsasseosteiset austeniittiset teräslajit
1. Malmista metalliksi Yleensä metallit esiintyvät erilaisissa yhdisteissä eli mineraaleissa Esim. Hematiitti (Fe2O3) ja kuparihohde (Cu2S) Jalot metallit.
Kemia, luento1 lisämateriaalia
Hapettuminen Jännitesarja Elektrolyysi Korroosio
Kandidaatintyö prosessimetallurgian laboratoriossa
Kurssin tavoitteet, sisältö ja toteutus
Prosessimetallurgian tutkimusryhmä Eetu-Pekka Heikkinen, 2014 Standarditilat Ilmiömallinnus prosessimetallurgiassa Syksy 2014 Teema 2 - Luento 2.
Ilmiömallinnus prosessimetallurgiassa Syksy 2014 Teema 1 - Luento 1
Liukoisuus-ja ionitulo
Heterogeeninen tasapaino
Kokonaiskuvan muodostaminen alumiineista
KUPARIN TIE KAIVOKSESTA JALOSTETUKSI TUOTTEEKSI
Ellinghamin diagrammit
Sulamisen ja jähmettymisen tarkastelu faasipiirroksia hyödyntäen
Faasipiirrokset, osa 2 Binääristen piirrosten tulkinta
Metallurgiset liuosmallit: WLE-formalismi
Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, yliopisto-opettaja Prosessimetallurgi(n)a Oulun yliopistossa P i e t a r i B r a h e n R o.
Kuonien rakenne ja tehtävät
Kaivostoiminta.
Prosessimetallurgian tutkimusryhmä Eetu-Pekka Heikkinen, Prosessimetallurgian opintosuunta Opintosuuntien informaatiotilaisuus Perjantai
Alumiinin käyttö Esimerkkejä pursotetun alumiinin käytöstä
Metallurgiset prosessit ja niiden mallinnus Torstai klo 8-10
Sähkökemian perusteita, osa 1
OH – ja H+ -ionit löytävät toisensa
Oulun yliopisto, Konetekniikan koulutusala, Tuotantotekniikka PL 4200, OULUN YLIOPISTO, Valmistustekniikka 2015.
Metalliseoksia.
4. Hapan ja emäksinen Luetellaan
Rikki
5. Sähkökemiaa Oppilastyö: Kaksi eri metallia ioniliuoksessa.
Happi Esiintyy ilmakehässä toiseksi yleisin ilmakehän kaasu (21%)
Kupari Cu.
4. Metallien sähkökemiallinen jännitesarja
Hieman yleistä taustaa Metallien maailmanmarkkinahintojen nousu Suhteellisen köyhienkin esiintymien muuttuminen mielenkiintoisiksi malmiesiintymiksi Perinteisten.
KE3 Hapot, emäkset ja ympäristö. 19. Liuos voi olla hapan, neutraali tai emäksinen Aineet voidaan luokitella happamiin, emäksisiin ja neutraaleihin aineisiin.
KASVIEN RAVINNETALOUS  16 alkuainetta, jotka välttämättömiä kasvin kasvulle ja kehittymiselle makro- ja mikroravinteet tarve erilainen eri kasveilla ja.
Ag H+H+ H+H+ Cl - 1. Hopealevy suola- happoliuoksessa Zn Cl - H+H+ H+H+ 2. Sinkkilevy suola- happoliuoksessa Cu NO 3 - Ag + 3. Kuparilevy hopea- nitraattiliuoksessa.
Avain Kemia 2 | Luku 7 Useimpien epämetallioksidien vesiliuokset ovat happamia ja metallioksidien vesiliuokset ovat emäksisiä. Vetyionit aiheuttavat liuoksen.
Hapot Kaikki hapot sisältävät vetyä. Happoja: suolahappo HCl rikkihappo H 2 SO 4 typpihappo HNO 3 Happo hajoaa vedessä ioneiksi: HClH + + Cl -
Prosessimetallurgian tutkimusryhmä Eetu-Pekka Heikkinen, 2016 Metallurgiset liuosmallit: WLE-formalismi Ilmiömallinnus prosessimetallurgiassa Syksy 2016.
Prosessi- ja ympäristötekniikan perusta
RAAKAÖLJY JA SEN JALOSTUS Öljyn jalostus.
Luku2, Alkuaineita ja yhdisteitä
7. Aineet ovat seoksia tai puhtaita aineita
Tiivistelmä 3. Puhdas aine ja seos
Lukion kemia 3, Reaktiot ja energia
1. Malmista metalliksi Yleensä metallit esiintyvät erilaisissa yhdisteissä eli mineraaleissa Esim. Hematiitti (Fe2O3) ja kuparihohde (Cu2S) Jalot metallit.
III VAHVAT SIDOKSET Ionisidos Metallisidos Kovalenttinen sidos
METALLIT.
IV HEIKOT SIDOKSET 14. Molekyylien väliset sidokset
Alkuaineiden jaksollinen järjestelmä
I AINEET YMPÄRILLÄMME Kemia on … Aineen eri muodot Maailmankaikkeus
Jatkojalostaihioiden valaminen / seostaminen, karkaisu, päästäminen
Metallit Rauta Kupari Alumiini Nikkeli Sinkki Litium Kromi Lyijy Tina
Messinki.
Kuparin valmistus ja liekkisulatusuuni
Sähkökemiaa Ioniyhdiste (suola) koostuu ioneista.
Kuparin valmistus ja liekkisulatusuuni
Korkealämpötilakemia
Vesi Veden erityisominaisuudet Veden erityisominaisuudet
Esityksen transkriptio:

Metallurgiset prosessit ja niiden mallinnus Torstai 19.9.2013 klo 8-10 Sinkin valmistus Metallurgiset prosessit ja niiden mallinnus Torstai 19.9.2013 klo 8-10 Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Luennon tavoite Tutustua sinkin hydrometallurgiseen valmistukseen ja sen osaprosesseihin (esimerkkinä Kokkolan sinkkitehdas) Lisäksi sivutaan: sinkkiä tuotteena sinkin valmistuksen raaka-aineita sinkin valmistuksen yhteydessä syntyviä jätemateriaaleja hydrometallurgisia prosesseja yleisesti Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Sisältö Sinkki ja sen käyttökohteet Sinkin valmistusmenetelmistä Sinkin valmistus hydrometallurgisesti Esimerkkinä Kokkolan sinkkitehdas Prosessivaiheet Pasutus Liuotus Liuospuhdistus Elektrolyysi Valu Sivutuotteiden käsittelyprosessit Lisäksi sivutaan hydrometallurgiaa yleisellä tasolla Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Sinkki Raudan, alumiinin ja kuparin jälkeen merkittävin käyttömetalli Metallinen epäjalo alkuaine Kosteassa ilmassa pinnalle muodostuu nopeasti oksidikerros, joka pysäyttää hapettumisen Ominaisuuksia Metalliksi matala sulamispiste (419 C) ja kiehumispiste (906 C) Huoneenlämpötilassa ja yli 200 C:ssa hauras, mutta pehmeä ja sitkeä 100-200 C:ssa (voidaan valssata ja vetää langaksi) Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Sinkin käyttökohteet Merkittävin käyttökohde on sinkitys eli galvanointi (noin puolet sinkistä) Kuuma-, sähkö- tai ruiskusinkitys Pinnoitettavan materiaalin korroosionkeston parantaminen: naarmuuntuessa syntyy sähköpari, jossa sinkkipinnoite toimii uhrautuvana anodina Messingit (Cu+Zn) ja muut sinkkiä sisältävät metalliseokset Painevalut Sinkkioksidi, sinkkikemikaalit, jne. Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Sinkin valmistuksen raaka-aineet Sinkki esiintyy yleensä sulfidina Tärkein sinkin raaka-aine on sinkkivälke, ZnS Yli 90 % sinkin valmistuksen raaka-aineista Sinkkivälkkeessä esiintyy kahta mineraalia: sfaleriittia (pkk) ja wurtziittia (heksagoninen) Sfaleriitissa usein rakennevirheitä, joissa sinkin on korvannut Fe, Mg tai Cd Muita merkittäviä ovat ZnCO3 ja Zn4(OH)2Si2O7 Usein samoissa esiintymissa lyijyn kanssa Lisäksi kadmium, kupari ja hopea yleisiä Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Sinkin valmistuksen raaka-aineet Esim. Zn 52 %, S 31 %, Fe 1-13 %, Pb 3 % + Cu, Ca, Mg, Si, Cd, ... Talteenotettavia Zn, S, Cu, Cd Pb, Ag, Au pieninä pitoisuuksina (talteenoton kannattavuus?) S, Hg ja Se ympäristön kannalta merkittäviä Fe:n talteenotto ei kannata taloudellisesti Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Sinkin valmistus- menetelmät Aiemmin vallalla pyrometallurgiset valmistusmenetelmät Nykyisin suurin osa sinkistä valmistetaan hydrometallurgisesti Ongelmina runsas energiankulutus sekä suuri määrä rautapitoista jätettä (jarosiitti, göetiitti tai hematiitti) Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Sinkin valmistusmenetelmät Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Sinkin valmistus Suomessa Boliden Kokkola Tuotteet Harkot (25 kg) Jumbot (1-2 t) SHG-Zn (Special High Grade) 99,995 % Zn Alumiiniseostettu sinkki Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Sinkin valmistus hydrometallurgisesti Esimerkkinä Kokkolan sinkkitehdas Prosessivaiheet Pasutus oksidiseen muotoon Liuotus rikkihappoon Liuospuhdistus Talteenottoelektrolyysi Valu Sivutuotteiden käsittelyprosessit Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Hydrometallurgiset yksikköprosessit Jäte Sivutuote Pyro- metallurginen Hydro- Jätteet Sivu- tuotteet Raaka-aine Aktivointi Köyhät raaka- aineet Epä- puhtaat Liuotus Jätteen- käsittely Liuottimen puhdistus ja regenerointi Liuos-puhdistus Saostus Tuote Kemiallinen Sähkö- kemiallinen Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013 Kuva: Pihkala J & Salminen R (1992) Prosessitekniikan kokonaisprosessit. Helsinki, Opetushallitus. 148 s. ISBN 951-37-1007-6 Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Pyrometallurginen aktivointi: Pasutus Kiinteän yhdisteen anioninvaihtoprosessi, jossa kationin hapetusaste ei muutu (ei hapetu/pelkisty) Sulfidirikasteiden korkealämpötilakäsittely ilman agglomeroitumista Yleensä esikäsittelynä hydrometallurgisille prosesseille Hapettava l. oksidoiva pasutus Sulfatoiva pasutus Klooraava tai fluoraava pasutus Alkalipasutus (etc.) Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Hapettava pasutus Sulfidimalmien pelkistys hiilellä ongelmallista esim. 2 ZnS + C = 2 Zn + CS2 tai ZnS + CO = Zn + COS tasapaino voimakkaasti lähtöaineiden puolella Sulfidien muuttaminen oksideiksi MeS + 3/2 O2 = MeO + SO2 Välivaihe esim. lyijyn, kuparin, sinkin, koboltin, nikkelin ja raudan valmistuksessa sulfidimateriaaleista SO2  SO3  H2SO4 Leijupeti-, sintraus- tai arinapasutus (pystyuunissa) Tuote joko hienojakoista tai huokoista palamateriaalia Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Sinkkirikasteen pasutus Happirikastetun ilman puhallus rikastepatjan läpi leijupetiuunissa Lämpötila: 900-1000 C Tavoitteena huonosti liukenevan sulfidin (ZnS) pasutus oksidiseksi (ZnO) Oksidi liukenee paremmin rikkihappoon Rikasteen sisältämä rauta reagoi sinkkiferriitiksi (ZnOFe2O3) Huonosti liukeneva; aiheuttaa sinkkitappioita Mahdollistaa rikin hyödyntämisen (H2SO4) Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Sinkkirikasteen pasutus Kuva: Pihkala J & Salminen R (1992) Prosessitekniikan kokonaisprosessit. Helsinki, Opetushallitus. 148 s. ISBN 951-37-1007-6 Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Pasuton ’tuotteet’ Pasutteen Zn-pitoisuus on noin 60 % (Fe 10 %) Jäähdytys Jauhatus Liuotukseen SO2-pitoinen kaasu Lämmön talteenotto (energiantuotantoon) Hienojakoisen pasutteen talteenotto (liuotukseen) Elohopean erotus (tuotteena 99,999 % Hg) Rikkihapon valmistukseen Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Liuotus Pasutteen liuotus Rikasteen suoraliuotus Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Liuotusprosessin edellytyksiä Prosessoitavan metallin/metalliyhdisteen liukeneminen liuottimeen Riittävän edullinen liuotin Metallin oltava otettavissa talteen liuottimesta (taloudellisesti) Epäpuhtaudet on oltava erotettavissa liuottimesta Liuotin oltava regeneroitavissa ja kierrätettävissä Liuotin ei saa syövyttää laitteistoa (liiaksi) Prosessissa käytettävien ja siinä syntyvien aineiden myrkyllisyys ja haitallisuus ympäristölle minimoitava Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Pasutteen liuotus Jatkuvatoiminen prosessi Tavoitteena ZnO:n liuotus rikkihappoon sulfaattina Neutraaliliuotus Lämpötila 60-80 C pH alussa hyvin matala ja loppuvaiheessa noin 4-5 Osa raudasta saostuu hydroksidina Sakeutin Liukenematon pasute (sinkkiferriitti) ja saostunut rautahydroksidi (Fe(OH)3) raudanpoistoon Sinkkiä sisältävä liuos liuospuhdistukseen Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Pasutteen liuotus Ferriittien käsittely eli konversioprosessi Lämpötila noin 100 C Sinkkiferriitin liuotus Raudan saostaminen jarosiittina: M[Fe3(SO4)2(OH)6] Jarosiitti sisältää mm. Fe (20 %), Pb (4 %), Zn (2-3 %), Cu, Cd, Hg, As, Ag, ... Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Pasutteen liuotus Prosessi- ja ympäristötekniikan osasto Kuva: Pihkala J & Salminen R (1992) Prosessitekniikan kokonaisprosessit. Helsinki, Opetushallitus. 148 s. ISBN 951-37-1007-6 Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Menetelmiä ferriitin käsittelyyn ja raudan erottamiseksi Pyrometallurginen ferriitin käsittely Waelz-menetelmä Sinkkiferriitin pelkistys hiilellä kaasufaasiin  ZnO Hydrometallurginen raudan saostaminen Edullisin ja käytetyin, mutta eniten jätettä tuottava Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Menetelmiä ferriitin käsittelyyn ja raudan erottamiseksi Hydrometallurginen raudan saostaminen Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Rikasteen suoraliuotus Rikasteen liuotus rikkihappoon hapen avulla ilman pasutusta Rikin talteenotto vaahdottamalla (erotetaan jarosiitista) Toteutus autoklaavissa (150 C; nopeampi) tai normaalipaineessa (100 C; hitaampi ja tilaa vievä) HUOM! Rikin sulamispiste 119 C asettaa haasteita Hyötyjä: mahdollisuus erilaisten rikasteiden käyttöön sekä tuotantokapasiteetin kasvu (tai uusi laitos ilman pasuttoa) Cu tai Pb korkea  Soveltuu huonosti pasutettavaksi Hg tai Cl korkea  Soveltuu huonosti suoraliuotukseen Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Rikasteen suoraliuotus: Rikin talteenotto Tavoitteena erottaa liuotusjäännöksestä alkuainerikki ja liukenematta jäänyt sinkkisulfidi rikkirikasteeksi jarosiitti, lyijysulfaatti ym. rautasakaksi Tehtävä, koska rikkiä ja jarosiittia ei voi varastoida yhdessä jarosiitin hajoamisvaaran vuoksi Erotus mahdollistaa vaahdotusrikasteen käsittelyn tulevaisuudessa (jos tarpeen) Elementtirikki on luontaisesti vaahdottuva, joten vaahdotuskemikaaleja ei tarvita Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Rikasteen suoraliuotus Rikkihapon (H2SO4) lisäksi sinkkirikasteen liuotukseen on kokeiltu myös muita liuottimia Suolahappo, HCl Alikloorihapoke, HClO Typpihappo, HNO3 Vesiliuokseen syötetty SO2/O2-kaasu Rikkihapon ja NaCl:n seos Rikkihapolla on hyvä saatavuus ja edullisuus Kloridiliuotuksen etuna on nopeus matalammassakin lämpötilassa; ongelmana korroosio ja ympäristöhaitat Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Liuospuhdistus = Neutraaliliuotuksen ylitteen (ns. raakaliuos) puhdistus elektrolyysiä ja sinkin talteenottoa varten Tavoitteena on poistaa kaikki epäpuhtaudet, jotka ovat haitaksi talteenottoelektrolyysissä Lisäksi tavoitteena on arvokkaiden metallien selektiivinen erotus omiksi tuotteikseen Cu, Co, Cd Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Liuospuhdistus Toteutus vaiheittain ja jatkuvatoimisesti Cu-poisto Kuva: Pihkala J & Salminen R (1992) Prosessitekniikan kokonaisprosessit. Helsinki, Opetushallitus. 148 s. ISBN 951-37-1007-6 Toteutus vaiheittain ja jatkuvatoimisesti Cu-poisto Co(+Ni)-poisto Cd-poisto Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Sementaatio Liuoksessa olevan metalli-ionin korvaaminen vähemmän jalolla metallilla Me(s) + M+(aq) = Me+(aq) + M(s) Tehokkuus riippuu metallien jalousasteiden erosta Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Liuospuhdistus: Cu:n poisto Ensimmäinen puhdistusvaihe Kuparin poisto sementointireaktiolla lisäämällä liuokseen sinkkipulveria Suurin osa kuparista poistuu sakkana Pieni määrä liukoista kuparia jätetään liuokseen Auttaa koboltin poistossa Estää kadmiumin saostumisen epäpuhtaudeksi kuparisakan sekaan Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Liuospuhdistus: Co:n poisto Toinen puhdistusvaihe Koboltin lisäksi poistetaan nikkeli, germanium, antimoni ja loput kuparista Sementointireaktio / Sinkkipulverin lisäys Lisäksi arseenitrioksidin käyttö reagenssina Antimonin ja germaniumin saostusmekanismit tuntemattomat Sinkin ja arseenin poistaminen sakasta jatkokäsittelyn helpottamiseksi Me= Co, Ni Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Liuospuhdistus: Cd:n poisto Kolmas puhdistusvaihe Kadmiumin lisäksi poistetaan vähän talliumia Tässäkin sementaatio (sinkkipulveri) Kadmiumin talteenotto syntyneestä sakasta Kuparin, lyijyn ja talliumin erotus Cd:n poiston jälkeen sinkkipitoinen sulfaattiliuos siirtyy jäähdytystornien ja kipsisakeuttimien kautta elektrolyysiin Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Sivutuotteiden ja jätteiden talteenotto ja käsittely Osa liuotuksessa ja liuospuhdistuksessa syntyvistä materiaaleista on hyödynnettävissä (omassa prosessissa tai tuotteena) Hyödyntämättömiä ja loppusijoitettavia ovat: Jarosiitti Rikkirikaste Kipsi-mangaanisakka Jätevesien käsittelyssä syntyvät lietteet Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Talteenottoelektrolyysi Liukenemattomat anodit (esim. Pb) Pääreaktiona hapen kehitys Epäjalommilla metalleilla myös vedyn kehitys Vetyionien määrä elektrolyytissä kasvaa Liuoksessa olevan arvometalli-ionin saostus katodille Metalli-ionien määrä elektrolyysissä vähenee Metalliköyhän elektrolyytin palautus takaisin liuotusprosessiin Nikkelin ja sinkin valmistuksessa Kuva: Aromaa J (2010) Katsaus liuospuhdistus-menetelmiin. Hydrometallurgia seminaari. Oulu, Pohto 13–14.4.2010. Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Sinkin talteenotto elektrolyyttisesti Metallisen sinkin pelkistyminen katodeille Katodien irrotus alumiinisesta emolevystä Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Sinkin talteenotto elektrolyyttisesti Kokkolan tehtaalla kaksi liuospiiriä sekä neljä erillistä virtapiiriä Yhteensä 840 elektrolyysiallasta, joista jokaisessa 45 anodia ja 44 katodia Liuoksen lämpötila noin 35 C Jännite 730 V, virta 35 kA Katodien ’kasvuaika’ liuoksessa 35-40 h Liuoksen Zn-pitoisuus laskee 60  55 g/l Rikkihappo kierrätetään takaisin liuotusvaiheeseen (ns. paluuhappo) Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Valu Katodeilta irrotetut Zn-levyt sulatetaan induktiouuneissa ja valetaan muotteihin Uuniin syötetään ammoniumkloridia, joka muodostaa kuonan ja estää hapettumista Jonkin verran sinkkisulaa rakeistetaan sinkkipulveriksi liuospuhdistuksen tarpeisiin Puhdasta sinkkiä valettaessa metallisula johdetaan valumuottiin, josta poistetaan pinnalle muodostunut ZnO ja jota jäähdytetään Al-seostettu sinkki kiertää seosuunin kautta Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Valu Induktiouuneja 2 kpl Valulämpötila noin 500 C Kapasiteetti 25 t/h Valulämpötila noin 500 C Tuotteina harkot (25 kg) tai jumbot (1000 kg) Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Yhteenveto Sinkkiä valmistetaan pääasiassa sulfidisista raaka-aineista Vallalla ovat hydrometallurgiset valmistusmenetelmät Suomessa sinkkiä valmistetaan Bolidenin Kokkolan tehtaalla Prosessi pitää sisällään seuraavat vaiheet: pasutus, liuotus, liuospuhdistusvaiheet, talteenottoelektrolyysi ja valu Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

Kiitokset Ville Vehkamäki Juho Savikangas Aija Rytioja Jyrki Heino Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013