Vääntövärähtelytehtävän ratkaisemisesta

Slides:



Advertisements
Samankaltaiset esitykset
Yleistä Läsnäolovelvollisuus Poissaolojen selvitys Käyttäytyminen
Advertisements

Kehäantennit Looppi, silmukka
Pinta-ala raja-arvona
Polynomifunktiot MA 02 Läsnäolovelvollisuus Poissaolojen selvitys
pyöriminen ja gravitaatio
Luku 1. Siirtotekniikan käsitteitä – Taajuus
Yhtälön ratkaiseminen
Robust LQR Control for PWM Converters: An LMI Approach
Talonrakennuksen jatkokurssi 6 op Säätekijät
5.1. Tason yhtälö a(x – x0) + b(y – y0) + c(z – z0) = 0
Analyyttinen geometria MA 04
S ysteemianalyysin Laboratorio Aalto-yliopiston teknillinen korkeakoulu Esitelmä 10 – Juho Kokkala Optimointiopin seminaari - Syksy 2010 Kernel-tasoitus.
Työ, teho ja yksinkertaiset koneet
Vuorovaikutuksesta voimaan
ATTRIBUUTTITARKASTUS
Nopeus s t v nopeus = matka: aika v = s :t
Tiheys.
Kappaleiden tilavuus 8m 5m 7cm 5 cm 14cm 6cm 4cm 4cm 3cm 10cm.
EXtensible Markup Language
Langattomien laitteiden matematiikka 1
Esim. työstä Auto lähtee levosta liikkeelle nousemaan mäkeä ylöspäin. Keskimääräinen liikettä vastustava voima on vakio. Mäen päällä autolla on tietty.
Derivaatta MA 07 Derivaatta tarkoittaa geometrisesti käyrälle piirretyn tangentin kulmakerrointa.
Valitse seuraaviin vaihtoehtotehtäviin oikea vastaus…
1 Senioreiden säästäminen ja maksutavat 2014 SENIOREIDEN SÄÄSTÄMINEN JA MAKSUTAVAT
KANNANVAIHTO?.
KERTAUSTA PERUSASTEEN MATEMATIIKASTA Piia junes
Prosenttilaskua, tiivistelmä
1.5. Trigonometriset yhtälöt
Työmarkkinatutkimus 2012 Yksityinen sektori
TMA.003 / L3 ( )1 3. Funktioista 3.1. Kuvaus ja funktio Olkoon A ja B ei-tyhjiä joukkoja. Tulojoukon A  B = {(x,y) | x  A, y  B} osajoukko on.
RSA – Julkisen avaimen salakirjoitusmenetelmä Perusteet, algoritmit, hyökkäykset Matti K. Sinisalo, FL.
Elinkeinopoliittinen mittaristo 2014
1.1. Itseisarvo * luvun etäisyys nollasta E.2. Poista itseisarvot
SATE11XX SÄHKÖMAGNEETTINEN KENTTÄTEORIA (LISÄOSA)
2 SÄTEILYÄ JA AINETTA KUVATAAN USEILLA MALLEILLA
1.a) f(x) = 2x(x2 – 3) = 0 2x = tai x2 – 3 = 0 x = tai x2 = 3
1 Raha-asioiden suunnitteleminen ja nykyinen rahatilanne Senioritutkimus 2011.
Tietovuokaaviot (ei osa UML-kieltä)
Aritmeettinen jono jono, jossa seuraava termi saadaan edellisestä lisäämällä sama luku a, a + d, a+2d, a +3d,… Aritmeettisessa jonossa kahden peräkkäisen.
Eksponentiaalinen kasvaminen ja väheneminen
Aritmeettinen jono jono, jossa seuraava termi saadaan edellisestä lisäämällä sama luku a, a + d, a+2d, a +3d,… Aritmeettisessa jonossa kahden peräkkäisen.
LÄÄKELASKENTA Kaasulaskut
RUNKOVÄRÄHTELY JA RUNKOÄÄNET
3.2. Ensimmäisen asteen polynomifunktio
Mittaustekniikka 26 AD-muuntimia Liukuhihna – Pipeline Muunnos tehdään useassa peräkkäisessä pipeline- asteessa, joissa kussakin ratkaistaan joukko bittejä.
1. Usean muuttujan funktiot
Vaihemodulaatio Vaihemodulaatio ja taajuusmodulaatio muistuttavat suuresti toisiaan. Jos moduloidaan kantoaallon vaihekulmaa, niin samalla tullaan moduloiduksi.
*14. Kolmiossa yksi kärki on origossa, toinen pisteessä A= (9, 0), B=(3,6) Osoita, että kolmion pyörähtäessä x-akselin ympäri syntyvän kappaleen tilavuus.
@ Leena Lahtinen OHJELMAN OSITTAMINEN LUOKKA ATTRIBUUTIT METODIT.
Heuristinen arviointi Käyttöliittymäseminaari Jere Salonen.
PARAABELI (2. ASTEEN FUNKTION KUVAAJIA)
@ Leena Lahtinen Toistorakenne Ohjelmassa toistetaan tiettyjä toimenpiteitä monta kertaa peräkkäin Toisto noudattaa sille kuuluvia tarkkoja standardoituja.
5. Lineaarinen optimointi
Vaasan yliopisto / Sähkötekniikka SATE11XX SÄHKÖMAGNEETTINEN KENTTÄTEORIA (LISÄOSA) 4.AALTOYHTÄLÖT.
Liike Nopeus ja kiihtyvyys.
Tilastollisesti merkitsevä nousu Tilastollisesti merkitsevä lasku Edelliseen aineistoon KMT 2005 verrattuna* KMT Kevät06 puolivuosiaineisto KMT SYKSY05/KEVÄT06.
Visual Basic -ohjelmointi
5. Fourier’n sarjat T
Väliaineen vastus.
Voima liikkeen muutoksen aiheuttajana
ÄÄNI.
Vaasan yliopisto / Sähkötekniikka SATE1110 SÄHKÖMAGNEETTINEN KENTTÄTEORIA 15.AALTOYHTÄLÖT.
Osa 5. Joustoista Kysynnän hintajousto (price elasticity of demand) mittaa, miten kysynnän määrä reagoi hinnan muutokseen = kysytyn määrän suhteellinen.
13. Nopeus kuvaa liikettä Nopeus on suure, joka kertoo kuinka kappaleen paikka muuttuu ajan suhteen. Nopeus on vektorisuure. Vektorisuureen arvoon liittyy.
Voimavektorit Kaikki voimatehtävät pohjautuvat Newtonin II lakiin: Tiivistelmä ja tehtäviä voimavektorien yhdistämisestä m on tarkasteltavan kappaleen.
Syventävä matematiikka 2. kurssi
Y56 Luku 21 Yrityksen teoria: kustannuskäyrät
KYNNYSILMIÖ kulmamodulaatioilla
Kertausta FUNKTIOISTA MAB5-kurssin jälkeen (Beta 2.0)
Faradayn laki Muuttuva magneettivuon tiheys B aiheuttaa ympärilleen sähkökentän E pyörteen. Sähkökentän voimakkuutta E ei voi esittää skalaaripotentiaalin.
Esityksen transkriptio:

Vääntövärähtelytehtävän ratkaisemisesta Tämä tiedosto perustuu osittain Koneisto POJ-yhteydessä jaettuun ppt-esitykseen ja laajentuu siitä Tämän sisältö on käytännössä osa KUL-tenttivaatimuksia. Mitään uutta kurssikirjaan ei tule esille. Toivomuksena pelkästään on ollut selventää kirjan värähtelyosuutta ja auttaa TL17-ohjelmalla ryhmässä tehtävää värähtelyharjoitusta. Asiat eivät tule aivan loogisessa järjestyksessä. Siksi olen viime hetkessä lisännyt eräitä selittäviä tekstibokseja. Ne tunnistaa tekstiä ympäröivästä risuaidasta.

Vääntövärähtelytehtävän ratkaisemisesta Imaginääriakseli Positiivinen suunta Ajatellaan yksikkövektorin pyörivän myötäpäivään kompleksitasossa kulma-nopeudella ωt. Silloin sen projektio reaaliakselilla sin (ωt) ilmaisee kunkin suureen reaaliarvon. ω ωt Reaaliakseli Positiivinen suunta Imanginääriyksikkö on neliöjuuri luvusta –1. Siis im2 = -1. Kompleksiluku sisältää reaali- ja imaginääriosan (toinen voi olla =0.) Kahden kompleksiluvun tulo (A + imB) x (C+imD) = AC – BD + im (AD + BC), sekin siis kompleksiluku!

Iω2 θ + d ω θ + k θ + T = 0 Tasapaino Värähtely tapahtuu aina herätteen t = T sin(ωt ) taajuudella. Massan (inertian) liike noudattaa yhtälöä φ= Φ sin (ωt + θ ), jossa sekä liikkeen amplitudi Φ että vaihekulma θ. Hitaustermi saadaan derivoimalla liike kahdesti ja kertomalla inertian arvolla. Termissä on mukana amplitudi. Vaimennustermi saadaan derivoimalla liike kerran ja kertomalla vaimennuskertoimen arvolla. Termissä on mukana amplitudi. Iω2 θ + d ω θ + k θ + T = 0 Tasapainoyhtälön termeistä eliminoidaan amplitudi jakamalla sillä molemmat puolet. Herätermin suuruudeksi tulee T/ Φ Funktion Φ sin (ωt + θ ) 1. derivaatta = Φ ωcos (ωt + θ ) ja 2. derivaatta = - Φ ω2 sin (ωt + θ )

Tasapaino Aina hitaus-, vaimennus- ja jäykkyystermi sekä heräte ovat tasapainossa. Kaikkien dimensio on momentti! Ne eivät ole samassa tai vastakkaisvaiheessa. Graafisessa esityksessä momenttikuvio sulkeutuu: reaali- ja imaginääri-osien summa =0. Kahdesta yhtälöstä ratkaistaan värähtely-amplitudi ja -vaihe suhteessa herätteen vaiheeseen. Momenttikuvion tekijät ovat vektoreita, koska niihin sisältyy amplitudi θ. Muut kertoimet ovat skalaareja, ’vain suuruus’. Hitaustermi liikkeen suuntaan (posit.reaaliakselin suunta) , vaimennustermi 90o liikettä jäljessä (vastustaa liikettä, negat. reaaliakselin suuntaan), jäykkyystermi vastakkainen liikkeen suhteen (negatiivisen reaaliakselin suuntaan).

Tasapaino Värähtely tapahtuu ulkoisen herätteen t = T sin (ωt ) taajuudella. Yksittäisen massa (inertian) liike noudattaa yhtälöä φ= Φ sin (ωt + θ ), jossa ovat sekä liikkeen amplitudi Φ että vaihekulma θ. ω ωt

Geometrinen ratkaisu sinimuotoinen herätemomentti T Inertia I Vääntö-jäykkyys K sinimuotoinen herätemomentti T Lineaarinen vaimennus d

Geometrinen ratkaisu, yksiköt Inertia I kgm2 Vääntö-jäykkyys K Nm/rad sinimuotoinen herätemomentti T Nm Lineaarinen vaimennus d Nms/rad

Matalat taajuudet Matalilla taajuuksilla ovat hitaus- ja vaimennustermit (kuvassa vektorit) pieniä. Jäykkyystermi kompensoi herätettä eli kulma φ on pieni. T/Φ on iso vektori, eli amplitudin Φ oltava pieni. Im Re  Iω2 T/Φ -dω K

Keskitaajuudet Keskitaajuuksilla hitaus- ja vaimennustermit (vektorit) kasvavat. Kulma φ kasvaa. T/Φ on taajuuden kasvaessa lyhempi = amplitudi Φ kasvaa Im φ Re Iω2 T/Φ -dω K

Resonanssitaajuus Hitaustermi kasvaa rajusti, myös vaimennustermi kasvaa. φ kasvaa arvoon 90o eli /2. T/Φ saavuttaa minimiarvonsa ja siten amplitudi Φ maksimi-arvonsa. Herätettä kompensoi yksin vaimennustermi. Im φ = 90o Iω2 Re T/Φ -dω K

Korkea taajuus Hitaustermi kasvaa hallitse-vaksi, jäykkyystermi on pieni. φ lähenee arvoa 180o eli = . T/Φ kasvaa jälleen, siis amplitudi Φ pienenee. Herätettä kompensoi yksin hitaustermi. Im φ = 167o Re Iω2 -dω T/Φ K

Hyvin korkea taajuus φ saavuttaa arvon 180o eli = . T/Φ = hyvin suuri, siis amplitudi Φ putosi lähes nollaan. Herätettä kompensoi yksin hitaustermi. Im φ = 177o Re Iω2 -dω T/Φ K

Värähtelyt, yleistä toistoa Sinimuotoinen voima herättää saman taajuuden värähtelyä. Dynaaminen suurennus on pienempi tai isompi kuin 1.0 riippuen herätetaajuudesta resonanssiin nähden. Heräte Taajuus Amplitudi Matala Ominaistaajuu-den alapuolella RESONANSSI Ominaistaajuu-den kohdalla Korkea Ominaistaajuu-den yläpuolella

Värähtelyt, yleistä toistoa Sinimuotoinen voima herättää saman taajuuden värähtelyä. Dynaaminen suurennus on pienempi tai isompi kuin 1.0 riippuen herätetaajuudesta resonanssiin nähden. Heräte Taajuus Amplitudi Matala Ominaistaajuu-den alapuolella RESONANSSI Ominaistaajuu-den kohdalla Korkea Ominaistaajuu-den yläpuolella

Värähtely, yleistä toistoa Ei-sinimuotoinen voima sisältää monia komponentteja ja herättää monia eri värähtelyjä. Liike-amplitudi riippuu sekä komponenttien sijainnista resonanssiin nähden sekä kyseisen komponentin amplitudista. Sakarapulssi Pulssin taajuus Amplitudi HYVIN MATALA KESKITASOA KORKEA

Vapaat värähtelyt ja muuttuvat taajuudet Vapaissa värähtelyissa ei ole lainkaan vaimennustermiä. Värähtely tapahtuu vain reaaliakselilla, siksi suureille riittävät lukuarvot (skalaarit). Vaihekulma φ on siis 0 tai 180o. Matalilla taajuuksissa termin T/Φ arvo on iso eli amplitudin Φ on oltava pieni. T/Φ Iω2 Re K Taajuuden noustessa Iω2 kasvaa. Resonanssissa sen arvo on sama kuin K, joten vaihekulma φ vaihtaa äkisti arvosta 0 arvoon 180o. T/Φ saa arvon 0, joten amplitudi Φ ääretön. Taajuuden edelleen noustessa käy K häviävän pieneksi, T/Φ taas kasvaa.

Dynaaminen vahvistus ja vaihesiirto vapailla värähtelyillä Alustaan siirtyvän voiman suhde herätevoimaan Ftr / F Ftr/ F Samanlainen muoto on herätevoiman aiheuttamalla massan liikkeellä. F 1.0 Taajuus Vastakkainen vaihe Ftr Sama vaihe Ominais-taajuus Taajuus

Dynaaminen vahvistus ja vaihesiirto resonanssissa Isommalla vaimennuksella on resonanssihuippu matalampi ja vaihekulman φ muutos välillä 0 - 180o rauhallisempi. Ftr/ F Resonanssin ulkopuolella ovat amplitudi ja rasitukset isommat kuin ilman vaimennusta F 1.0 Taajuus Ftr Vastakkainen vaihe Sama vaihe Ominais-taajuus Taajuus

Lähtöarvot Moottorinvalmistaja, luokituslaitokset ja kytkinvalmistajat laskevat palveluna vääntövärähtelyt ja tuntevat lähtöarvot. Jatkossa 2 esimerkkiä. INERTIA kgm2 JÄYKKYYS MNm/rad VAIMENNUS Nms/rad Suoralle akselinosalle lasketaan inertia tunnetun materiaalin tiheyden ja osan geometrian pohjalta. Jäykkyyteen tarvitaan liukumoduli. Moottorinvalmistaja antaa spesialistille sylinterikohtaiset (sylinteriparikoh-taiset) arvot. Ennen niitä arvoja löytyi yleisesti moottorin projektioppaasta. Laitetoimittaja antaa yleensä lähtöarvot riittävän luotettavasti ja tarkasti. Epävarmuutta liittyy korkeintaan vaimennuskertoimiin ja potkurin lisättyyn vesimassaan.

MT Tervi massaelastinen malli Inertia kgm2, Stiffness (jäykkyys) MNm/rad Vaimennin Nro 1 2 3 4 5 6 7 8 9 10 11 12 Name Damper sec. Damper prim. Cylinder 1 Cylinder 2 Cylinder 3 Cylinder 4. Cylinder 5 Camshaftdrive Flywheel Flange OK coupling Propeller Inertia 32500 1737 17500 7666 21650 770 1500 87050 Stiffness 40 2400 1671 2503 4438 8608 144 132 Sylinterikohtaiset vaimennusarvot ovat luokkaa 5000 Nms/rad Potkurin inertiassa 18% lisättyä vettä (normaaliarvo täydellä nousulla)

MS Dredge Queen massaelastinen malli Nro 1 2 3-11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Name Damper sec. Damper prim. Cylinders 1-9 Camshaftdrive Flw + coupl. Coupling sec. Clutch Gear wheel Pinion Bullwheel Shaft mass 1 Shaft mass 2 Propeller Coupling pri Coupling sec Shaft mass Generator Inertia 87 13 110 70 184 11 56 100 43 623 175 435 5140 18 3.5 4 272 Stiffness 6.5 419 116 (290) 260 1.4 78 47 140- - 210 38 29 27 0.28 2.5 13 Inertia kgm2, Stiffness (jäykkyys) MNm/rad Vaimennin HUOM: Arvot viittaavat ko. akselin pyöri-misnopeuteen. Välityssuhteet: 16-22: 2.084 17-18: 0.346 Potkurin inertiassa on 25% lisättyä vettä Vaihde contents Sylinterikohtaiset vaimennusarvot ovat luokkaa 400 Nms/rad

Vääntövärähtelyt Holzerin laajennettu taulukkomenetelmä kompleksisilla luvuilla soveltuu hyvin ketjumaisten värähtelysysteemien laskemiseen kuten esimerkiksi propulsiokoneistojen. Sitä käyttää TL17. Massaelastinen malli muodostetaan tässäkin niin, että kiekkomaisten inertioiden välillä on massattomia jousia ja viskoosia vaimennusta. Vaimennus voi olla absoluuttista eli ulkoista (inertian värähtelynopeuteen verrannollista) tai relatiivista eli sisäistä (kahden inertian välisen amplitudin nopeuseroon verrannollista).

Värähtely Ei-sinimuotoinen heräte (‘sakara-aalto) sisältää siis äärettömän monta siniaaltoa, ns. harmonista komponenttia. Fourier- analyysi on näiden komponenttien hakeminen. 1/T 1/2T 1/3T 1/4T 1/5T 1/6T Jakso = T Taajuus = 1/T 1/7T 1/8T 1/9T 1/10T 1/11T etc.

Yhden sylinterin kaasuheräte, ristikappalemoottori Kaasu-voima P 2-tahtimoottorin työkierto kestää 360o eli yhden kampiakselin kierroksen Voima Työkierron aikana kaikki muut paitsi kaasuvoima saavat negatiivisia arvoja Guide force-voima T Radiaali-voima R Tangen-tiaalinen kaasu- heräte + - Tangentiaali-voima T 0 90 180 270 360 Kammenkulma, astetta

Kaasuheräte Kaksitahtimoottorin sylinteri jaettu harmonisiin komponentteihin Vertailu osoittaa, ettei 2-tahtimoottorilla esiinny lainkaan puolikas-kertalukuja 0.5, 1.5 jne. koska työjakson pituus = kampiakselin kierro 1.0 2.0 3.0 4.0 5.0 Työjakso = kampiakselin kierros

Yhden sylinterin kaasuheräte, nelitahtimoottori 4-tahtimoottorin työkierto kestää 720o eli kaksi täyttä kampiakselin kierrosta Kaasu-voima Inertia- voima Tangentialalivoima Kaasu- heräte + - Tangentiaali-voima (pyörii kampiakselin mukanat) 0 180 360 540 720 Kammenkulma astetta

Usean sylinterin heräätteen yhdistäminen Yksittäisten sylinterien heräte lasketaan yhteen sytytysvälit huomioon ottaen. Momentin vaihtelu saadaan tästä. Vääntövärähtelyjen kannalta tärkeä on myös sytytysjärjestys. Esimerkki: 5-sylinterinen 2-tahtimoottori Syl 1 Syl 3 Syl 2 Syl 4 Syl 5 Vaihe-ero on sytytysvälin suuruinen eli 72o. 0 72 244 216 288 360 Kammenkulma astetta

Sylinterin kaasuheräte Tangentiaalivoima muutetaan paineeksi jakamalla männän pinta-alalla. Paine jaetaan harmonisiksi komponenteiksi. Kuvassa 4-tahtimoottori. Tässä käyrässä on mukana myös massa- eli inertiaheräte 0.5 1.0 1.5 2.0 2.5 3.0 2-tahti-moottorista puuttuvat ’puolikas’-kertaluvut FTDC TDC FTDC TDC Top Dead Center = YKK, yläkuolokohta. FTDC Firing Top Dead Center = puristustahdin yläkuolokohta 3.5 4.0 4.5 5.0 5.5 etc. FTDC TDC FTDC

Sylinterin kaasuheräte Kullakin harmonisella komponentilla on oma amplitudinsa ja vaiheensa. Ne riippuvat moottorityypistä ja kuormasta = polttoaineen määrästä. Pyörimisnopeudella ei sen sijaan ole kaasuherätteeseen vaikutusta. 2 4 6 8 10 12 Herätepaine bar 1.0 Tässä vain esimerkki-luonteisesti mielivaltaisesti 4 harmonista kertalukua 0.5 3.0 6.5 5 10 15 20 25 30 bar tehollinen keskipaine

Sylinterin kaasuherätteen vaihe Ilmeistä on, että harmoniset komponentit ovat kukin erilaisessa vaiheessa. Siksi jokaiselle harmoniselle komponentille ilmoitetaan amplitudi ja vaihe. Vaihtoehtona on ilmoittaa kunkin sin- ja cos-komponentit.

Sylinterin massaheräte Massaherätettä aiheuttavat edestakaisin liikkuva mäntä ja kiertokangen yläosa (siitä noin kolmasosa). Englanninkielinen nimi reciprocating masses Heräte aiheutuu siitä, että nämä massat kiihdytetään ja hidastetaan nollasta täyteen nopeuteen kahdesti yhden kampiakselin kierroksen aikana. Jos kiertokanki olisi äärettömän pitkä verrattuna iskuun, seuraisi tästä pelkästään kertaluvun 2 herätettä. Massaheräte on verrannollinen nopeuden neliöön, kuten hitausvoimat yleensä.

Sylinterin kaasu- ja massaheräte, nelitahtimoottori 4-tahtimoottorin työkierto kestää 720o eli kaksi kampiakselin kierrosta Kaasu-voima Inertia- voima Tangentiaalivoima Kaasu- heräte Massavoima- inertiaheräte Resultantti + - Tangentiaali-voima (pyörii kampiakselin mukanat) 0 180 360 540 720 Kammenkulma astetta

Sylinterin kaasuheräte ja massaheräte Joka harmoniselle komponentille ilmoitetaan amplitudi ja vaihe (vaihtoehtona sin- ja cos-komponentit). Kaasuheräte punaisella. Massaheräte lisätään kerta- luvuilla 1, 2, 3, 4. Se on selvästi puhdas sin- komponentti, koska se saa yläkuolokohdassa aina arvon = 0, kuvassa mustalla. 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 etc.

Sylinterin kaasuheräte Kuvassa kertaluvulle 0.5 on annettu esitystavat: amplitudi T ja vaihe  ja toisaalta sin ja cos. SIN COS  T Työjakso 720o Tietenkään sin- ja cos-komponentit eivät voi olla suurempia kuin amplitudi T. Pythagoraan mukaan T = sqrt (SIN2 + COS2 )

Vääntövärähtelyt Vaimennin Inertia i-1 Inertia i Inertia i+1 Sisäinen vaimennus drel,i Jäykkyys i-1 Jäykkyys i Ulkoinen vaimennus du,i

Vääntövärähtelyt Vääntövärähtelyissä pyörivät massat korvataan levymaisilla inertioilla. Niiden väliset akselit kuvataan massattomilla jousilla. Laivan koneistot ovat yleensä ketjumaisia rakenteita. Näitä haaroja on joskus vain yksi. Inertioiden kohdalla haaraan voi liittyä muita haaroja. Tavallisesti liitoskohdassa on hammas-pyörävälitys. Välityksen jäykkyys voidaan riittävällä tarkkuudella olettaa äärettömäksi. Tämänkaltaisille ketjumaisille haaroille soveltuu hyvin askelin etenevä laskentaohjelma. Aloitetaan 1. haaran 1. inertiasta eli sen vapaasta päästä. Laskettavaa inertiaa ja sitä seuraavaa akselinosaa merkitään indeksillä i.

Vääntövärähtelyt Vaimennin Inertia i-1 Inertia i Inertia i+1 Sisäinen vaimennus drel,i Jäykkyys i-1 Jäykkyys i Ulkoinen vaimennus du,i Moottorinvalmistaja ilmoittaa kampiakselille sekä sisäisen että ulkoisen vaimennuskertoimen lukuarvot. Muualla on merkittävää ulkoista vaimen-nusta vain potkurissa, sisäistä vaimennusta kytkimissä ja vaimentimissa.

Vääntövärähtelyt - vaimennetut pakkovärähtelyt Ominaistaajuuksista tai värähtelymuodoista ei tarvitse ohjelman TL17 käyttäjän tehdä oletuksia, eikä hallitsevista kertaluvuista. Tietysti laskettavien tapausten määrä vähenee suuresti, jos tiedetään mitä kertalukuja, mitä pyörimisnopeusalueita lasketaan ja miten pienellä nopeusaskeleella. Jos järjestelmässä on joustavia kytkimiä, misfiring lasketaan kertaluvuilla 0.5 ja 1.0. Muuten vain normal operation kertaluvuilla 3 ... 7 (harvoin on tarpeen laskea korkeampia kertalukuja). Laskentaa kuvaa myöhemmin tuleva ohjelman lohkokaavio. Ensin kuitenkin selvitetään vapaiden värähtelyiden laskentaa, joilla voidaan hakea ominaistaajuudet.

Vääntövärähtelyn ominaistaajuudet Arvataan ominaistaajuus f. Kulmanopeus ω = 2 f. Kokemuksen avulla arvaus osuu lähelle oikeaa. Oletetaan vapaan pään inertialle amplitudi Φ1 = 1 rad. Ensimmäisen inertian kiihdyttävä momentti on I1ω2 Sitä seuraavan akselin vääntymä on I1ω2 /K1. Sitä seuraavan inertian amplitudi on siis 1 - I1ω2 /K1 Vast. kiihdyttävä momentti on (1 - I1ω2 /K1) I2ω2 Momenttisumma on edellisen inertian kohdalla laskettu momenttisumma + lisäys nykyisen inertia kohdalla eli I1ω2 + (1 - I1ω2 /K1) I2ω2. Nämä ovat siis skalaarisuureita, siis desimaalilukuja Näin lasketaan edelleen seuraavan akselin vääntymä ja edetään massa kerrallaan akselin toiseen päähän

Vääntövärähtelyn ominaistaajuudet Tietyn inertian kohdalla amplitudi vaihtuu negatiiviseksi. Se tarkoittaa solmun syntyvän kahden massan väliin. Kun ampl. on <0, kiihdyttävä momentti on negatiivinen! Viimeisen inertian kohdalla tulisi momenttisumman  0. Kriteerinä on esimerkiksi pienempi kuin 10-3 Nm Ellei ole, muutetaan taajuutta momenttisumman etumerkin mukaan suorittaen haarukoivaa interpolointia. Toistetaan laskelmaketju niin monta kertaa, kunnes momenttisumman arvo on riittävän pieni. Värähtelymuoto näkyy siitä, miten monta kertaa vaihtui akselilla amplitudiarvo posiitivisesta negatiiviseen tai päinvastoin. Se on siis solmujen lukumäärä.

Vääntövärähtelyn ominaistaajuudet Tämä ominaisvärähtelymuoto on helppo piirtää, koska inertioilla on joko sama tai vastakkainen vaihe. (Todellisuu-dessa tämä värähtelymuoto ei ole tarkka edes resonanssi-taajuudella, koska aina on mukana vaimennusta.) Amplitudit ovat suhteellisia. Vapaan pään ykkösinertian amplitudi = 1 (tai vapaata päätä lähimmän sylinterin amplitudi) Vektorisummat ko. värähtelymuodossa ja kaikilla kertaluvuilla saadaan antamalla kyseisen vektoritähden kullekin sylinterille suhteellisen amplitudin mukainen pituus. Ominaistaajuudet eivät ole tarkkoja, niitä siirtää vaimennus. Vaimennin noteerataan laskemalla ääritapaukset (infinite damping,  jousien jäykkyys) sekä zero damping. Todellinen taajuus on näiden tapausten välillä.

Vääntövärähtelymalli Päähaara = haara 1 (moottori) Päähaara = haara 2 (moottori) Sivuhaara = haara 4 (ei moottori) Sivuhaara = haara 5 päättyy alennusvaihteeseen, voi olla myös päähaara Päähaara = haara 3 (potkurihaara)

Vääntövärähtelymalli, numerointi Päähaara = haara 1 (moottori) 1 2 3 4 5 6 7 8 9 10 Päähaara = haara 2 (moottori) 1 2 3 4 5 6 7 8 Sivuhaara = haara 4 (ei ole moottori) 1 2 3 4 4 3 2 1 4 3 2 1 Sivuhaara = haara 5 päättyy alennusvaihteeseen, siksi voi olla myös päähaara Päähaara = haara 3 (potkurihaara)

Vääntövärähtelyt, sylinteriherätteen paikat Päähaara = haara 1 (moottori) Päähaara = haara 2 (moottori) Sivuhaara = haara 4 (ei moottori) Sivuhaara = haara 5 päättyy alennusvaihteeseen, voi olla myös päähaara Päähaara = haara 3 (potkurihaara)

Vääntövärähtelyt TL17 Lue massaelastinen malli ja laskettava tapaus Uusi moottorien välinen vaiheyhdistelmä Uusi laskettava harmoninen kertaluku Uusi moottorin käynti-nopeus

Torsional vibrations TL17 Select the mass-elastic model and actual task New phase combination between engines New harmonic order to investigate New engine rev. speed to calculate

Vääntövärähtelyt TL17 Oleta yksikön suuruinen vapaan pään amplitudi Laske seuraavan inertian kompleksinen inertia Laske tämän inertian amplitudi edellisen inertian amplitudin ja akselin kiertymän erotuksena

Vääntövärähtelyt TL17 Assume unity torsional free end amplitude Calculate the complex inertia of next shaft mass Calculate the amplitude of this shaft mass subtracting shaft twist from the previous shaft mass complex amplitude

Vääntövärähtelyt TL17 Laske kiihdyttävä momentti kompleksisten amplitudin ja inertian tulona Lisää kiihdyttävä momentti edellisen inertian kohdalla laskettuun momenttisummaan Jos inertia on sylinteri, laske heräte-momentti keskipaineen funktiona sytytysjärjestyksen mukaisessa vai-heessa ja lisää momenttisummaan

Torsional vibrations TL17 Calculate accelerating torque as product of complex amplitude and inertia Add the accelerating torque to calculated sum torque at the previous shaft mass If shaft mass is cylinder, calculate , excitating torque - observing the phase from firing order - and add to the cumullative torque sum

Vääntövärähtelyt TL17 Kyllä Liittyykö inertian kohdalla haaraan liittyy sivuhaara? oleta sivuhaaran alkuinertialle yksikön suuruinen amplitudi ja laske koko haara yksi inertia kerrallaan. Lopuksi aseta liitos-kohdan amplitudit välityssuhde huomioon ottaen yhtäsuuriksi ja laske korjattu arvo kyseisen haaran alkuinertialle ja kaikille muille inertioille. Lisää päähaaran inertian kohdalle sivuhaaran momenttisumma Ei Lisää kiihdyttävä momentti edellisen inertian kohdalla laskettuun momenttisummaan

Torsional vibrations TL17 Yes Is side branch connected to the calculated shaft mass? assume unity amplitude at the sub branch free end shaft mass and proceed calculating all branch masses one by one. Do equation where connection point shaft masses have equal complex amplitudes, observing the gear ratios. Corrected value be calculated now for the sub branch free end amplitude and all other shaft masses. Torque sum of sub branch will be added to main branch cumulative torque sum at the connection point. No Add the accelerating torque to cumulative torque sum at the previous shaft mass

Vääntövärähtelyt TL17 oleta seuraav. päähaaran alkuinertialle yksikön suu-ruinen amplitudi ja laske koko haara. Lopuksi aseta pääteinertian amplitudi samaksi kuin alennus-vaihteen amplitudi välitys-suhde muistaen ja laske korjattu amplitudi pää-haaran alkuinertialle. Lisää päähaaran viimeisen inertian momenttisumma alennusvaihteen moment-tisummaan Jos päähaaran kaikki inertiat on laskettu, tarkista liittyykö viimeiseen inertiaan (alennusvaihteeseen) muita päähaaroja. Kyllä Ei Kaikkien inertioiden tultua lasketuksi kirjoita momenttitasapainoyhtälöt.

Torsional vibrations TL17 assume unity amplitude at next main branch free end mass and proceed calculating branch masses one by one. Do equation where connection point shaft masses have equal complex amplitudes, observing the gear ratios. Corrected value can be calculated now for main branch free end amplitude and all other shaft masses. Torque sum of main branch will be added to cumulative torque sum at the main reduction gear. If all shaft masses of main branch have been calculated, check if further main branches are ending to its last inertia (reduction gear) Yes No If all shaft masses were calculated, write torque balances equations.

Vääntövärähtelyt TL17 Laske todellinen (kompleksi-) arvo haaran 1 inertian 1 amplitudille ja sen vaiheelle suhteessa moottorin 1 sylinterin 1 puristustahdin YKK:lle. Lasketut korjatut oikeat arvot kaikille amplitudeille, kiertymille, momenteille Kyllä Lasketaanko lisää pyörimisnopeuksia Ei Lasketaanko lisää kertalukuja Kyllä Ei Lasketaanko lisää vaiheyhdistelmiä Kyllä Ei Loppu

Vääntövärähtelyt TL17 Calculate the real complex value to the free end mass of shaft nro 1 and its phase related to the firing TDC of free end cylinder or engine 1. Calculate corrected values to all amplitudes, twists, and torques. Yes More speed steps to be calculated? No More orders to be calculated? Yes No More phase combin's to be calculated Yes No END

Taajuuskaavio, MS Dredge Queen Värähtelytaajuus, cpm Kertaluvut 12 11.5 11 10.5 10 9.5 5000 4500 4000 3500 3000 2500 2000 1500 1000 500 9.08.58.07.57.06.5 6.05.5 5.0 4.54.03.5 3.02.52.0 1.51.00.5 Punaiset vaakaviivat ovat ne 5 ominais-taajuutta 100 150 200 250 300 350 400 450 500 550 rpm Tähän ei ole piirustustekn. syistä piirretty risteyskohtiin vektorisummia, jotka kuvaavat miten vahva moottorin heräte on normal condition-tilassa

Taajuuskaavio, MS Finlandia 2 x 12PC2.5 Värähtelytaajuus, cpm Punaiset vaaka-viivat ovat viisi 2-moottoriajon ominaistaajuutta, siniset 1-moottori-ajon. Kertaluvut 12 11.5 11 10.5 10 9.5 5000 4500 4000 3500 3000 2500 2000 1500 1000 500 9.08.58.07.57.06.5 6.05.5 5.0 4.54.03.5 3.02.52.0 1.51.00.5 3640 crankshaft 3331 eng x engi 1738 two nodes in the shaftline 682 main coupl 534 eng x engin 371 aux cpl 276 shaftline 1739 shaftlin 2 622 main coupl 381 aux cpl 281 shaftline 100 150 200 250 300 350 400 450 500 550 rpm Geislinger-kytkimet, ei vauhtipyörää eikä vv-vaimenninta. Pitkähkö akseli-johto, pienitehoinen akseligeneraattori vailla irroituskytkintä 1000 rpm.

MS Dredge Queen massaelastinen malli Nro 1 2 3-11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Name Damper sec. Damper prim. Cylinders 1-9 Camshaftdrive Flw + coupl. Coupling sec. Clutch Gear wheel Pinion Bullwheel Shaft mass 1 Shaft mass 2 Propeller Coupling pri Coupling sec Shaft mass Generator Inertia 87 13 110 70 184 11 56 100 43 623 175 435 5140 18 3.5 4 272 Stiffness 6.5 419 116 (290) 260 1.4 78 47 140- - 210 38 29 27 0.28 2.5 13 Inertia kgm2, Stiffness (jäykkyys) MNm/rad Vaimennin HUOM: Arvot viittaavat ko. akselin pyöri-misnopeuteen. Välityssuhteet: 16-22: 2.084 17-18: 0.346 Potkurin inertiassa on 25% lisättyä vettä Vaihde contents Sylinterikohtaiset vaimennusarvot ovat luokkaa 400 Nms/rad

Heräte Sylinterien herätteet lasketaan yhteen ottaen huomioon sytytys-järjestyksen tuoma vaihe-ero. Esim: 4-sylinterinen 4-tahtimoottori Aivan ilmeisesti summauksen seurauksena momentin vaihtelu pienenee. Tarkka analyysi vaatii, että katsotaan harmonisia komponentteja. Vaihesiirto on kaikilla 180o. 0 180 360 540 720 Kampiakselin kulma astetta

Heräte Kertaluku 1, 4-sylinterinen nelitahtimoottori Vaihesiirto 180o on sellainen, että sylinterien herätteet täydellisesti kumoavat toisensa. Phase shift Työjakso = 2 kampiakselin kierrosta

Heräte Kertaluku 1, 4-sylinterinen nelitahtimoottori RESULT Vaihesiirto 180o on sellainen, että sylinterien herätteet täydellisesti kumoavat toisensa. RESULT Työjakso = 2 kampiakselin kierrosta

Heräte Kertaluku 2, 4-sylinterinen nelitahtimoottori Kertaluvulla 2 vaihesiirto onkin 360o = niinpä herätteet täysin kumuloituvat. Phase shift Työjakso = 2 kampiakselin kierrosta

Heräte Kertaluku 1, 4-sylinterinen nelitahtimoottori RESULT Kertaluvulla 2 vaihesiirto onkin 360o = niinpä herätteet täysin kumuloituvat. RESULT Työjakso = 2 kampiakselin kierrosta

Vektorisumma Vektorisumma on luku, joka ilmoittaa miten vahva heräte moottorista tulee suhteessa yhteen sylinteriin. Sylinterin vektorin pituus on sen suhteellinen amplitudi kyseisessä värähtelymuodossa. Jos sylinterin suunta on vastakkainen, otetaan amplitudi laskelmassa negatiivisena. 1.0 Order Työjakso = 2 kampiakselin kierrosta

Vektorisumma Vektorisumma on luku, joka ilmoittaa miten vahva heräte moottorista tulee suhteessa yhteen sylinteriin. Tässä yhden sylinterin pituus on sen suhteellinen amplitudi kyseisessä värähtelymuodossa. Jos sylinterin suunta on vastakkainen, otetaan amplitudi laskelmassa negatiivisena. laskettu vektorisumma on tässä = 0.7, ei 0. Vastaavasti kertaluvun 2 vektorisumma on =2.3, ei 4.0 Order 1.0 RESULT Työjakso = 2 kampiakselin kierrosta

Vektorisummien laskeminen Oletetaan 6 sylinterinen moottori, lyhyt akselijohto ja potkuri, Kuva 1. Kuva 2 näyttää yksi-solmuisen värähtelyn ominaismuodon. Solmu node sijaitsee väli-akselilla. Sen lisäksi myös kampiakselilla on suuri vääntymä Kuva 1 Hidaskäyntinen koneisto 1.0 Kuva 2 Yksisolmuinen värähtely

Vektorisummien laskeminen 1 2-tahtisen 6-sylinterisen moottorin kampiakseli on kuvassa 3. Sytytysjärjes-tys on 1-5-3-4-2-6. 4-tahtisen 6-sylinterisen moottorin kampiakseli on kuvassa 4. Sytytysjärjes-tys on 1-3-5-6-4-2. 5 6 3 2 4 Kuva 3 2–tahtisen kampiakseli 1 6 3 4 5 2 Kuva 4 4-tahtisen kampiakseli

Vektorisummien laskeminen Kun moottorin jälkeen lisätään joustava kytkin, muuttuu värähtelymuoto suuresti, kuva 5. Tämän muodon ominais-taajuus on paljon alempi kuin kuvan 2 tapauksessa. Kampiakseli ja akselijohto käyttäytyvät jäykkinä kappaleina. Vapaiden päiden amplitudit silti samat kuin kuvassa 1. Joustava kytkin 1.0 Kuva 5 yksisolmuisen värähtelyn ominaismuoto, kun mukana on joustava kytkin.

Vektorisummien laskeminen Moottorin heräte jaetaan harmonisiin komponenteihin. Jokaiselle kertaluvulle myös sylinterien väliset vaiheet muuttuvat. Kampiakselin kulma kerrotaan kertaluvulla. Kuvassa 6 kertaluku on 3. Kuva 7 näyttää vektoritähden 6-sylinteriselle 2-tahtimootto-rille; kuva 8 6-sylinteriselle 4-tahtimoottorille. 1 1 5 4 Kulma sylinterien 1&5 välissä on ‘luonnossa’ 60o, kertaluvulla 3.0: 3 * 60o = 180o . Kulma sylinterien 1&4 välissä ‘luonnossa’ 180o. 3 * 180o = 180o. Kuva 6 vaihekulmien laskeminen

Vektorisummien laskeminen … Kampiakselin kulma kerrotaan kertaluvulla. kyseistä kertalukua laskiessa ‘kaikki tapahtuu n-kertaa nopeammin kuin luonnossa.’ … 1 1 5 4 Kulma sylinterien 1&5 välissä on ‘luonnossa’ 60o, kertaluvulla 3.0: 3 * 60o = 180o . Kulma sylinterien 1&4 välissä ‘luonnossa’ 180o. 3 * 180o = 180o. Kuva 6 vaihekulmien laskeminen

Vektorisummien laskeminen 1 1 3 1 2 4 Sylinterit 6 5 3 2 4 2 5 4 6 3 5 6 Kertaluvut 1 7 2 8 3 9 1 3 1 1 2 3 4 5 6 6 5 4 6 2 5 2 3 4 Kertaluvut 4 10 5 11 Pääharmoniset 6 12 Kuva 7 Pää- ja sivuharmoniset kertaluvut 2-tahtimoottorissa (pääharmonisilla kertaluvuilla sylintereillä sama vaihe ja vektorien suunta)

Vektorisummien laskeminen 1 1 3 1 2 4 6 5 3 2 4 2 5 4 6 3 5 6 Kertal. 0.5 2.5 3.5 5.5 6.5 1 2 4 5 7 1.5 4.5 7.5 1 2 3 4 5 6 Periaate selvinnee. Näitä laskelmia ei ole tarkistettu, vektoreissa voi olla virheitä. Pääharmoniset 3 6 9 Kuva 8 Pää- ja sivuharmoniset kertaluvut 4-tahtimoottorissa

Vektorisummien laskeminen Kuva 9 näyttää vektorisummat 6-sylinterisen 4-tahti-mottorin koneistolle; laskettuina erikseen kullekin harmoniselle kertaluvulle. Ne saadaan yhteenlaskemalla yksittäisten sylinterien vektorit… joiden pituus tulee niiden suhteellisesta amplitudista (kuvasta 2) ja suunta vektoritähdestä (kuvasta 8). Resultanttivektori R näyttää koko moottorin herätteen.

Vektorisummien laskeminen 6543 2 1 3 5 4 2 R = 4.18 2 4 6 4 6 3 1 2 1 3 5 1 5 6 R = 1.09 R = 0.20 R = 0.24 Harmonic 0.5 2.5 3.5 1 2 4 1.5 4.5 7.5 3 6 orders 5.5 6.5 5 7 8 Kuva 9 Vektorisummat: Kuvan 2 yksisolmuinen värähtelymuoto; 4-tahtimoottori ilman joustavaa kytkintä.

Vektorisummien laskeminen 6 5 4 3 2 1 3 2 5 4 5 3 6 3 4 R = 5.78 2 6 1 1 5 6 1 R = 0.05 R = 0.02 4 2 R = 0.18 Harmonic 0.5 2.5 3.5 1 2 4 1.5 4.5 7.5 3 6 orders 5.5 6.5 5 7 8 Figure 10 Vektorisummat: Kuvan 5 yksisolmuisen värähtelymuoto, 4-tahtimoottori joustavalla kytkimellä varustettuna.

Vektorisummien laskeminen Elastic coupling 1.0 Kuva 11 Toinen, kaksisolmuinen värähtelymuoto 6-sylinterisellä 4-tahtimoottorilla ja joustavalla kytkimellä.

Vektorisummien laskeminen 654 3 2 1 6 5 4 R 3 2 1 2 5 2 6 3 3 1 R = 4.51 4 6 R=0.01 R=0.931 1 4 5 Pienennys kokoon 50% R = 0.02 Harmonic 0.5 2.5 3.5 1 2 4 1.5 4.5 7.5 3 6 orders 5.5 6.5 5 7 8 Kuva 12 Vektorisummat: Kuvan 11 mukainen kaksisolmuinen värähtelymuoto, 4-tahtimoottori joustavalla kytkimellä.

Vaimennin Vaimennin viritetään niin, että sen oma ominaistaajuus on lähellä vaimennettavaa resonanssitaajuutta. Teräs-jousten muodonmuutokset syövät energian, jonka öljy kuljettaa pois lämpönä. Vaimennin sijoitetaan kohtaan, jossa amplitudi on suuri(n). Inertia ring = ‘seismic mass’ Steel springs Oil inlet Ulkohalkaisija on keskinopeilla jopa 1200 mm, hidaskäyntisillä jopa 2400 mm Cranshaft free end flange Inner stern

Kampiakselijännitys , 6-syl. hidaskäyntinen Kertaluvun 6.0 leikkaus-jännitys ilman vaimenninta. Leikkausjännitysamplitudi MPa Sallittu 80 Kertaluku 6.0 vaimentimella varustettuna 60 40 20 40 60 80 100 120 140 160 180 rpm Nimellisnopeus

Kampiakselijännitys , 9-sylinterinen keskinopea Leikkausjännitysamplitudi MPa Salittu LR 315mm akselille 30 25 20 Kertaluvun 6.0 leikkausjännitys sylinterien 4 ja 5 välissä ilman vaimenninta. Nimellisnopeus 15 10 Kertaluku 6.0 vaimentimella varustettuna 5 200 250 300 350 400 450 500 550 rpm

Kytkimen värähtelyrasitus Misfiring kohottaa momenttiamplitudia nimenomaan kytkimessä ja vaihteessa. Se voi johtaa kumikytkimen elementtien vaurioon. Vaihteessa momenttiamplitudi voi ylittää keskimääräisen momentin. Tämä ns. gear hammering sallitaan lievänä käyttöalueen alapäässä. Vaihde on mitoitettu yleensä +25 … 35% vaihtelulle. Kytkimen jäykkyyden ja vauhtipyörän inertian muutoksilla voidaan kertalukujen 0.5 ja 1.0 resonanssit työntää normaalin käyttöalueen ulkopuolelle. Monihaaraisissa koneistoissa on pakko sietää joitakin resonansseja. Aina auttaa kytkimen korkea vaimennuskerroin. Kymikytkimen vaimennus on pieni, kumilaadusta riippuen  = 0.15 …0.25. Geislinger -teräsjousikytkimen vaimennus on jopa  = 0.7.

Kytkimen värähtelyrasitukset, MS Dredge Queen 9-sylinterinen keskinopea Nimellisnopeus, Nimellismomentti Momenttiamplitudi kNm 80 Keskimomentti Kertaluvut 0.5 ja 1.0 misfiring- tilanteessa. 60 40 20 Kertaluku 1.0 normaalitilanteessa 10 200 250 300 350 400 450 500 550 rpm

Kytkimen värähtelyrasitukset, MS Finlandia 2 x 12-sylinter. keskinopeat Pääkytkin BC 90/20/13 sallittu momentti 63.2 kNm Nimellis-nopeus Momenttiamplitudi kNm Misfiring-moott., kertaluku 1.0 misfiringtilanteessa 40 Normaalisti käyvä moottori, kertaluku 1.0 misfiring-tilanteessa Keskimomentti 30 Kertaluku 3.0 riippumatta misfiringista Kertaluku 0.5 misfiring- tilanteessa, katkoviiva on normaalisti käyvä m. 20 10 200 250 300 350 400 450 500 550 rpm

Kytkimen värähtelyrasitukset, MS Dredge Queen Laskelmaa jatkettiin 600 rpm asti, jotta saatiin näkyviin kertaluvun 0.5 resonanssi. Misfiring-tilanteessa 520rpm amplitudi on liian korkea. Nimellismomentti 77 kNm, amplitudi 35 kNm. Gear hammering ei esiinny. Mutta jos Geislinger-kytkimen vaimen-nus puolittuisi, keskimomentti ylittyisi misfiring-tilanteissa 300 ja 520 rpm. Kuka ajaa tietoisesti misfiring-tilanteessa?! Ei kukaan – paitsi hätätilanteessa. Mutta normaalitilassakin sylinterien välillä palamisen epätasapaino tuo samaa luokkaa olevan momentinvaihtelun.