Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Slides:



Advertisements
Samankaltaiset esitykset
Termodynamiikan suureita ja vähän muutakin mikko rahikka 2006
Advertisements

Lämmönsiirtyminen Lämpö siirtyy aina korkeammasta
Vuorovaikutuksesta voimaan ja edelleen liikkeeseen
Lämpötila.
Kevät on se hankalaa kun jäät sulaa keväällä koemme todellista jääpulaa avantoa ei ole silloin missään minne mennä lämpimissään.
Mekaaninen energia voimatarinoita
Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012
Lämpöistä oppia ja energiaa
lämpöoppia eri lämpötila, eri aineet, loppulämpötila?
FYSIIKKA 8 AINE JASÄTEILY
Vuorovaikutuksesta voimaan
Voimista liikeilmiöihin ja Newtonin lakeihin
Tiheys.
Tilavuus.
Tilavuus.
Olomuodon muutokset ominaislämpökapasiteetti c = aineen ominaisuus, kuinka paljon aine voi luovuttaa / vastaanottaa lämpöenergiaa (Huom! Kaasut vakiopaine/vakiotilavuus)
Olomuodosta toiseen.
Aineen rakenteen standardimalli
Mihin seikkoihin ihmiset kiinnittävät huomiota taloa hankkiessaan:
6. Energia ja olomuodot.
Kertaus.
pieni kokoelma mekaniikan suurejärjestelmästä Mikko Rahikka 2001
OLOMUODON MUUTOKSET KUMPI SULAA HELPOMMIN, JÄÄ VAI TINA?
Haasteellinen vuorovesi-ilmiö
Matematiikka ja fysiikka AUTO-ALA
Kestoside.
Lämpölaajeneminen animaatio Miksi sähköjohdot roikkuvat?
Lämpö Lämpö on energiaa. Kappaleet voivat luovuttaa ja vastaanottaa lämpöenergiaa. Lämpöenergia voi myös varastoitua.
Lämpö Lämpö on energiaa. Kappaleet voivat luovuttaa ja vastaanottaa lämpöenergiaa. Lämpöenergia voi myös varastoitua.
Ennakkotietämys esiin! Fysiikan ja kemian pedagogiikan perusteeet (mat/fys/kem suunt.) Syksy 2014 Kari Sormunen.
Tiheys
1 TUTKITTAVAA KOHDETTA KUTSUTAAN SYSTEEMIKSI
15. Lämpöenergia luonnossa ja yhteiskunnassa
Aineen rakenne.
12. Olomuoto riippuu paineesta ja lämpötilasta FAASIKAAVIO
14. Aine laajenee lämmetessään
Väliaineen vastus.
Voima liikkeen muutoksen aiheuttajana
Solukalvon tarkka rakenne ja toiminta
LÄMPÖOPIN PÄÄSÄÄNNÖT.
Kiihtyvyys Kuvaa nopeuden muutosta.
SUBLIMOITUMINEN JA HÄRMISTYMINEN
Höyrystyminen ja tiivistyminen
SUBLIMOITUMINEN JA HÄRMISTYMINEN
TYÖ JA ENERGIA Voima tekee työtä siirtäessään kappaletta yleensä jotain voimaa vastaan. Esim. Kitkaa vastaan  siirtotyö Painovoimaa vastaan  nostotyö.
Lämmönsiirtyminen Lämpö siirtyy aina korkeammasta lämpötilasta matalampaan.
13. Nopeus kuvaa liikettä Nopeus on suure, joka kertoo kuinka kappaleen paikka muuttuu ajan suhteen. Nopeus on vektorisuure. Vektorisuureen arvoon liittyy.
7. Lämpö laajentaa Lämpötila on fysiikan perussuure, joka kuvaa kuinka kuuma aine tai kappale on Lämpötilan tunnus on T (tai t) Lämpötilan perusyksikkö.
LÄMPÖLAAJENEMINEN Kun ainetta lämmitetään, sen rakenneosasten lämpöliike voimistuu. Silloin rakenneosaset tarvitsevat enemmän tilaa ja aine laajenee. Vastaavasti.
Pisara 6 Fysiikka ja kemia
Luku2, Alkuaineita ja yhdisteitä
8 Lämpölaajeneminen.
7. Aineet ovat seoksia tai puhtaita aineita
Länsiharjun koulu 4a.
Tiivistelmä 3. Puhdas aine ja seos
Olomuodosta toiseen.
5 Lämpö ja energian siirtyminen
Mekaaninen energia ja työ
IV HEIKOT SIDOKSET 14. Molekyylien väliset sidokset
1 Termodynaaminen systeemi
Elinympäristömme alkuaineita ja yhdisteitä
FY2 kertaus
LÄMPÖ Miksi tiskivesi tuntuu kädessä lämpöiseltä?
Elävän luonnon kemialliset reaktiot tapahtuvat
Lämpö energiamuotona Lämpövoimakone muuttaa lämmön mekaaniseksi energiaksi. Lämpövoimakoneita: lämpövoimalaitokset, auton polttomoottori. Energian huononeminen.
Lämpölaajeneminen Lämpötila johtuu rakenneosasten liikkeestä
Riikka Tarsa käsityökasvatuksen aineopinnot kevät 2011
Tasaisen liikeen malli
Lämmön johtuminen ja eristäminen
Lämpöenergia Energian säilymislaki: energia muuttaa muotoaan, muttei häviä. Lämmön säilymislaki: kun kylmä ja lämmin kappale koskettavat, kylmä vastaanottaa.
Esityksen transkriptio:

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Lämpöistä oppia Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Alkudemonstraatio Käsi lämpömittarina Laittakaa kolmeen eri altaaseen kylmää, haaleaa ja lämmintä vettä. 1) Pitäkää toista kättä kylmässä ja toista lämpimässä vedessä noin puoli minuuttia. 2) Siirtäkää molemmat kädet yhtä aikaa haaleaan veteen. Miltä haalea vesi tuntuu käsissä? Mitkä seikat vaikuttavat lämpöaistimukseen? Mitä mieltä olette kädestä lämpömittarina?

Lämpöoppi eli termodynamiikka tutkii lämpöön, energiaan ja lämpötilaan liittyviä ilmiöitä Käsitteitä Lämpöenergia (energiamuoto) Lämpö/lämpömäärä (esimerkiksi 50 oC:n lämpötilassa oleva neste sisältää lämpöä tietyn määrän; esimerkiksi vesien sekoittamisessa erilämpöisillä vesillä on erilainen lämpömäärä) Lämpötila (kuvaa itse asiassa aineen rakenneosasten liikkeen nopeutta)

Oppilaiden ennakkokäsityksiä energiasta Oppilaat ajattelevat, että energia liittyy eläviin olentoihin; sellaisilla kappaleilla kuin auto, kivi, jne. ei voi olla energiaa. Energia liittyy ihmisen ”energisyyteen”. Elävillä olioilla voi olla energiaa, mutta sillä on varsin tekninen merkitys eikä se tarkoita ihmisen aktiivisuutta. Energia liittyy liikkumiseen. Oppilaiden mielestä energiaa tarvitaan liikkumiseen, ilman energiaa kappaleet ovat elottomia. Energia liittyy liikkumiseen, mutta fysiikan mukaan liikkuvalla kappaleella on energiaa, mutta kappale ei liiku energian vaikutuksesta. Energiaa pidetään aineen, polttoaineen kaltaisena. Kun oppilaat kuvaavat auton polttoainetta, he puhuvat polttoaineesta energiana eikä että polttoaineesta saadaan energiaa. Energia ei ole ainetta. Energia on abstrakti käsite, jonka lukuarvo voidaan joissakin tapauksissa laskea esimerkiksi kappaleen nopeudesta ja massasta. Oppilaat ajattelevat, että energia kuluu. Fysiikan teorian mukaan energia ei kulu. Energian säilymislaki on luonnontieteen peruslakeja.

Aineen olomuodot Aine koostuu rakenneosista (atomeista tai molekyyleistä). Rakenneosaset ovat jatkuvassa liikkeessä, ja liike lisääntyy lämpötilan kasvaessa ja aineen olomuodon muuttuessa Kiinteä aine (lämpötila alhainen) Aineen rakenneosaset on tietyillä paikoilla ja järjestäytyneet “hilarakenteeksi”. Rakenneosasten liike on hyvin pientä. Jos rakenneosasten liike pysähtyisi, olisi kyseessä absoluuttinen nollapiste (ei voida saavuttaa).

Nestemäinen aine (lämpötila kohonnut) Rakenneosaset ovat edelleen kiinni toisissaan, mutta niillä on enemmän liikkumavapautta. Kaasu (lämpötila kohonnut) Kaasussa rakenneosaset eivät ole sidottu toisiinsa vaan liikkuvat vapaasti toisiinsa törmäillen. Ainetta lämmittäessä rakenneosasten liike kasvaa ja hiukkaset pyrkivät ottamaan suuremman tilan. Tästä syystä aineet laajenevat lämmetessään. Poikkeus: vesi ei laajene sulaessaan ja tästä syystä jää kelluu vedessä (ρjää < ρvesi)

Esimerkki lämpölaajenemisesta Pekkalan vanhempi silta on teräsrakenteinen betonikantinen palkkisilta. Sen pituus on 453 metriä. Pekkalan sillan lämpölaajeneminen pituussuunnassa voidaan laskea seuraavasti: ΔL = α· ΔT· Lo, missä ΔL = pitenemä, α = aineelle ominainen pituuden lämpölaajenemiskerroin, ΔT = lämpötilan muutos, Lo = alkuperäinen pituus Teräksen α = 12·10-6 1/ºC. Oletetaan, että silta on talvella (-25 ºC) 453,0 m pitkä. Kesällä (+25 ºC) silta on siis pitempi, pidentymä on ΔL = 12·10-6 1/ºC·50ºC·463,0m = 0,2778m eli n. 28 cm. Sillan toinen pää lepää rullien päällä, jotka mahdollistavat sillan venymisen kesällä ja supistumisen talvella. 

Olomuotojen muutoksista Aineen lämpötilan nostamiseen tarvitaan energiaa. Lämpö/lämpömäärä kuvaa siirtyvän lämpöenergian määrää Aineen sulamispisteessä lämmön tuominen muuttaa aineen kiinteästä nesteeksi, eikä lämpötila tällöin kohoa Vastaavasti aineen jäätyessä siitä vapautuu lämpöä Myös nesteen muuttaminen kaasuksi kiehumispisteessä vaatii energiaa eikä aineen lämpötila tällöin nouse.

Aine voi muuttua myös suoraan kiinteästä kaasuksi (sublimoituminen) tai toisinpäin (härmistyminen) Esim. pyykit kuivavat pakkasella (sublimoituminen) ja ikkunoissa talvipakkasella näkyvät kuurankukat (härmistyminen)

Lämpöenergian siirtyminen Lämpöenergian siirtymisen suunta on aina lämpimämmästä kylmempään päin Jos ovea avataan talvipakkasella, niin ulkoa ei tule ”kylmää” vaan lämpöenergia siirtyy ulos. Lämpöenergia voi siirtyä kolmella tavalla Johtumalla: Lämpöenergia siirtyy, mutta ainetta ei siirry. Virtaamalla/kulkeutumalla: Lämpöenergia siirtyy aineen mukana. Säteilemällä: Lämpöenergia siirtyy ilman väliainetta.

Pohdittavaa! Minkä vuoksi lämmitetyssä saunassa oleva rautanaula polttaa ihoa, mutta lauteet eivät? Rautanaulan lämpötila on korkeampi kuin lauteiden Naula johtaa paremmin lämpöä Naulan pinta-ala on pienempi kuin lauteiden Pitäisi olla selvä juttu, kun ajattelet lämmön johtumista (vrt. lusikka-työ harjoituksissa). Mitä tapahtuu ja miksi kun kuuma rautakappale (lämpötila 100 °C) pudotetaan veteen (lämpötila 20 °C)? Lämpötilat tasoittuvat koska vesi luovuttaa kylmää raudalle Molempien lämpötilat tasoittuvat 60 °C:een, koska molemmat luovuttavat saman määrän energiaa toisilleen Lämpötilat tasoittuvat koska rauta luovuttaa lämpöä veteen Miksi ei voi olla a-vaihtoehto? (ks. edellä olevista dioista) Miksi ei voilla b-vaihtoehto? (ei voida päätellä kuten vesien sekoittumisessa, koska eri aineita ja niillä vielä eri olomuoto) Miksi on c-vaihtoehto? (ks. edellä olevista dioista) Minkä vuoksi kylmissä maissa talojen seiniin laitetaan rakennusvaiheessa lasivillaa? Saadaan kevyellä rakenteella paksummat seinät Huokoisessa materiaalissa oleva ilma toimii hyvänä lämmöneristeenä Paksumpi seinä estää kylmän virtaamisen sisään Ja tämähän on ihan selvä (vrt. harjoituksissa veden jäähtyminen lasipurkissa ilman eristettä ja solumuovi eristeenä).