Solunsisäiset rakenteet, kalvostot ja proteiinien lajittelu (Chapter 12 Alberts et al.) BIOLOGIAN LAITOS, SEPPO SAARELA, 2011.

Slides:



Advertisements
Samankaltaiset esitykset
Solun tukiranka Chapter 16 BIOLOGIAN LAITOS, SEPPO SAARELA, 2010.
Advertisements

Työ, teho ja yksinkertaiset koneet
Erilaistuneita soluja
YHDISTELMÄ-DNA-TEKNIIKKA
HelenaRimaliMankkaankoulu2013
Solujen viestintä BIOLOGIAN LAITOS, SEPPO SAARELA, 2010.
Keuhkot ja hengitys Mankkaan koulu Helena Rimali -
Sydänsolun toiminta.
Tuki- ja liikuntaelimistö, liikkuminen II
The Plant Cell / Mitokondriot
Vakuutusmaksutulo yhteensä 9,1 mrd € Työeläkevakuutusyhtiöiden markkinaosuudet 2007.
Transkriptiossa syntyy m-rna (lähetti-rna).
Solusimulaattorit S Laskennallinen systeemibiologia Sebastian Köhler.
Ribosomit ja valkuaisainesynteesi
Säännöt 30 kuvaa 45 sekuntia / kuva 10 sekuntia kirjoitusaikaa Vastaus suomeksi, ruotsiksi, englanniksi, tieteellisellä nimellä tai sen 3+3 lyhenteellä.
Säännöt 30 kuvaa 45 sekuntia / kuva 15 sekuntia kirjoitusaikaa Vastaus suomeksi, ruotsiksi, englanniksi, tieteellisellä nimellä tai sen 3+3 lyhenteellä.
Säännöt 30 kuvaa 45 sekuntia / kuva 10 sekuntia kirjoitusaikaa Vastaus suomeksi, ruotsiksi, englanniksi, tieteellisellä nimellä tai sen 3+3 lyhenteellä.
Tulos ennen satunnaisia eriä Me 7,1 6,5 3,3 4,3 4,
Säännöt 30 kuvaa 45 sekuntia / kuva 15 sekuntia kirjoitusaikaa Vastaus suomeksi, ruotsiksi, englanniksi, tieteellisellä nimellä tai sen 3+3 lyhenteellä.
Elinkeinopoliittinen mittaristo 2014
Harrastajatutkinto Säännöt Pisteytys 30 kuvaa 45 sekuntia / kuva
Säännöt 30 kuvaa 45 sekuntia / kuva 15 sekuntia kirjoitusaikaa Vastaus suomeksi, ruotsiksi, englanniksi, tieteellisellä nimellä tai sen 3+3 lyhenteellä.
Säännöt 30 kuvaa 45 sekuntia / kuva 10 sekuntia kirjoitusaikaa Vastaus suomeksi, ruotsiksi, englanniksi, tieteellisellä nimellä tai sen 3+3 lyhenteellä.
Kappale 1.
Solun kemia BIOLOGIAN LAITOS, SEPPO SAARELA, 2010.
Säännöt 30 kuvaa 45 sekuntia / kuva 10 sekuntia kirjoitusaikaa Vastaus suomeksi, ruotsiksi, englanniksi, tieteellisellä nimellä tai sen 3+3 lyhenteellä.
Suuntaamattoman graafin syvyyshaku
Seinäjoki kisa A Tuomari: Tytti Lintenhofer ALO 12kyl, 4pys Kyl:
Eksponentiaalinen kasvaminen ja väheneminen
Maitotaito PIENEN VAUVAN PÄIVÄ Maitotaito.
Säännöt 30 kuvaa 45 sekuntia / kuva 15 sekuntia kirjoitusaikaa Vastaus suomeksi, ruotsiksi, englanniksi, tieteellisellä nimellä tai sen 3+3 lyhenteellä.
Graafialgoritmit laskennal- lisessa systeemibiologiassa Graph Algorithms in Computational Systems Biology Työn valvoja ja ohjaaja: Prof. Patric Östergård,
Tuma BIOLOGIAN LAITOS, SEPPO SAARELA, 2010.
Dekstraanimikropartikkelit ja niiden nasaaliantotapa 4 Nasaaliantotavan edut –lääkeaineen nopea imeytyminen –nopea vaikutus –ensikierron metabolian välttäminen.
Johdatus bioinformatiikkaan
Suomen Lääkäriliitto | Finnish Medical AssociationLääkärit Suomessa | Physicians in Finland Tilastotietoja lääkäreistä ja terveydenhuollosta 2014 Statistics.
Geenit.
1 Kiinteät lipidipartikkelit Vaihtoehtoinen menetelmä liposomeille, emulsioille ja synteettisille polymeeripartikkeleille Koostuvat kiinteistä lipideistä,
Solukalvon erilaistumat ja solujen kiinnittyminen toisiinsa (Chapter 19 Alberts et al.) BIOLOGIAN LAITOS, SEPPO SAARELA, 2010.
Tilastollisesti merkitsevä nousu Tilastollisesti merkitsevä lasku Edelliseen aineistoon KMT 2005 verrattuna* KMT Kevät06 puolivuosiaineisto KMT SYKSY05/KEVÄT06.
Mitoosi.
Proteiinien matka suusta soluille
Mitokondriot Chapter 14 BIOLOGIAN LAITOS, SEPPO SAARELA, 2010.
Bakteerien rakenne ja patogeeniset bakteerit
Solukalvon tarkka rakenne ja toiminta
Peroksisomit BIOLOGIAN LAITOS, SEPPO SAARELA, 2010.
Makromolekyylit BIOLOGIAN LAITOS, SEPPO SAARELA, 2010.
Perimä evoluution todisteena. Yksilö perii geeninsä vanhemmiltaan Perimän tarkempaa vertailua tehdään tutkimalla -tuman kromosomien määrää -kromosomien.
SOLUN AINEENVAIHDUNTA
BIOLOGIAN LAITOS, SATU MÄNTTÄRI, 2012 Osmoregulaatio ja kuona-aineiden eritys.
DNA:n & RNA:n rakenne ja toiminta
Solujen jakautuminen Solusyklissä vaihtelevat välivaihe ja jakautumisvaihe Solusyklissä vaihtelevat välivaihe ja jakautumisvaihe - yleensä välivaihe kestää.
Solun toiminta tarvitsee energiaa
BIOS BIOS 2 jakso 1 Geenit ohjaavat proteiinien rakentumista 4 aminohappo DNA emäskolmikko geeni Golgin laite koodaava juoste lähetti-RNA mallijuoste Avainsanat.
Solujen kemiallinen rakenne.  Solujen yleisimmät alkuaineet: o Hiili (C) o Vety (H) o Happi (O) o Typpi (N)  Solujen yhdisteet voivat olla: o Orgaanisia.
Kehon energiantuotto.
2. Solun hienorakenne.
Kertaus Aineenvaihdunta katalyytti entsyymi substraatti
Solu ottaa ja poistaa aineita
SOLUN AINEENVAIHDUNTA
Eliöt rakentuvat soluista
Solun tuman rakenne ja toiminta
HORMONIT Elimistön kemiallisia lähettejä (vrt. hermosto)
Solut lisääntyvät jakautumalla
Kpl 1-3 SOLU.
Lihakset Lihassolut eli lihassyyt ovat ohuita ja supistumiskykyisiä soluja Toiminta perustuu lyhenemiskykyisiin proteiinisäikeisiin (lihassäikeet l. myofibrillit)
Solun perusrakenne I Solun perusrakenne.
5 Solun toimintaohjeet ovat geeneissä.
Perinnöllisyystieteen perusteita
Solun perusrakenne I Solun perusrakenne.
Esityksen transkriptio:

Solunsisäiset rakenteet, kalvostot ja proteiinien lajittelu (Chapter 12 Alberts et al.) BIOLOGIAN LAITOS, SEPPO SAARELA, 2011

BIOLOGIAN LAITOS, SEPPO SAARELA, 2011 Figure 12-1 Molecular Biology of the Cell (© Garland Science 2008)

Sytosoli BIOLOGIAN LAITOS, SEPPO SAARELA, 2011

Sytosoli eli solulima määritellään operatiivisesti ei sedimentoidu suurillakaan g-arvoilla 6-12x106 g EM: ei rakennetta  ei ole verrattavissa esim. entsyymien laimeisiin vesiliuoksiin suuri osa vedestä makromolekyylien hydraatiovaipassa  2 vesifaasia: 1. vapaa 2. sitoutunut (suhteellisen järjestäytynyt rakenne) makromol. reaktiot edellyttävät 70-80 % vesipitoisuutta BIOLOGIAN LAITOS, SEPPO SAARELA, 2011

Inkluusiot ”jyväsiä” vapaana solulimassa, siis eivät kalvon ympäröimiä eivät kuulu solun varsinaiseen aineenvaihdunta-koneistoon lipidipisarat glykogeeni pigmentit (melaniini, lipofuskiini) lipidipisara (rasvavakuoli) tuma solulima BIOLOGIAN LAITOS, SEPPO SAARELA, 2011

Plasma membrane Endopmic reticulum Golgi vesicles Intercellular space Secretory vesicle Nuclear membrane Nucleus Mitochondrion BIOLOGIAN LAITOS, SEPPO SAARELA, 2010

BIOLOGIAN LAITOS, SEPPO SAARELA, 2011

BIOLOGIAN LAITOS, SEPPO SAARELA, 2011 Table 12-1 Molecular Biology of the Cell (© Garland Science 2008)

BIOLOGIAN LAITOS, SEPPO SAARELA, 2011 Table 12-2 Molecular Biology of the Cell (© Garland Science 2008)

Endoplasmakalvosto endoplasmic reticulum (ER) 10 % solun tilavuudesta ER:n rajaamissa onteloissa, putkissa ja rakkuloissa solun kaikista membraaneista n. 50 % on ER:ia Sileä endoplasmakalvosto (sER) ei ribosomeja, putkimaista lipidi- ja vierasainemetabolia lihas: pitkälle erikoistunut ns. sarkoplasminen kalvosto; rakkulat sitovat vapautuvan Ca2+  lihassupistus BIOLOGIAN LAITOS, SEPPO SAARELA, 2011

Karkea endoplasmakalvosto Karkea endoplasma-kalvosto (rER) ribosomeja kiinnittyneenä sytosolin puolella yl. levy- tai ontelomaista syntetisoi proteiineja  molekyyli cisternaan  kulkeutuvat sER:stä kuroutuvissa rakkuloissa karkeassa ER:ssä ribosomeja tunnistavia proteiineja ER:n rakenne muistuttaa plasmamembraanin rakennetta, suurimmat erot proteiinikoostumuksessa (eril. entsyymit) BIOLOGIAN LAITOS, SEPPO SAARELA, 2011

BIOLOGIAN LAITOS, SEPPO SAARELA, 2011 Figure 12-2 Molecular Biology of the Cell (© Garland Science 2008)

rER ... synty: rER  sER  Golgin laite solun jakautuessa myös ER jakautuu tytärsolujen kesken ER tärkeä osa solun kompartmentalisaatiota! (solun jakamisessa eri osiin) BIOLOGIAN LAITOS, SEPPO SAARELA, 2011

Soluorganellien evoluutio – hypoteettinen malli BIOLOGIAN LAITOS, SEPPO SAARELA, 2011 Figure 12-4a Molecular Biology of the Cell (© Garland Science 2008)

Mitokondrioiden evoluutio – hypoteettinen malli BIOLOGIAN LAITOS, SEPPO SAARELA, 2011 Figure 12-4b Molecular Biology of the Cell (© Garland Science 2008)

Kalvostojen topologiset vuorovaikutukset soluerityksessä BIOLOGIAN LAITOS, SEPPO SAARELA, 2011 Figure 12-5 Molecular Biology of the Cell (© Garland Science 2008)

Proteiiniliikenteen tiekartta BIOLOGIAN LAITOS, SEPPO SAARELA, 2011 Figure 12-6 Molecular Biology of the Cell (© Garland Science 2008)

Rakkuloiden (vesikkelien) muodostumisen ja kuljetuksen periaate BIOLOGIAN LAITOS, SEPPO SAARELA, 2011 Figure 12-7 Molecular Biology of the Cell (© Garland Science 2008)

Useimmat organellit eivät voi rakentua uudelleen (De Novo) itsestään Useimmat organellit eivät voi rakentua uudelleen (De Novo) itsestään. Tarvitsevat informaation organelliin. Solujen jakautumisessa myös organellien määrä kahdentuu Uusia molekyylejä liitetään organelleihin  laajeneminen  jakautuminen  vieminen tytärsoluihin Tarvitaan prot. N-terminaalinen signaalisekvenssi Signaalipeptidaasi katkaisee valmiista proteiinista signaalisekvenssin Voidaan saada myös kertautuneesta ah-sekvenssistä  3D atomijärjestys proteiinin pinnalla (a signal patch) BIOLOGIAN LAITOS, SEPPO SAARELA, 2011

BIOLOGIAN LAITOS, SEPPO SAARELA, 2010 Table 12-3 Molecular Biology of the Cell (© Garland Science 2008)

Molekyylien liike tuman ja sytosolin välillä Kaksisuuntainen liike jatkuvasti vain sytosolin ja tuman välillä. Monet tumassa toimivat proteiinit (histonit, DNA ja RNA polymeraasit, geenien säätelijäproteiinit, RNA:n prosessointiin osallistuvat proteiinit) kuljetetaan tumaan selektiivisesti sytosolista, jossa ne on syntetisoitu. tRNA:t ja mRNA:t samaan aikaan tumassa ja kuljetetaan sytosoliin Import ja export prosessit ovat selektiivisiä mRNA modifioidaan ensin tumassa valmiiksi Ribosomaaliset proteiinit valmistetaan sytosolissa ja kuljetetaan tumaan, käsitellään ja viedään rRNA:n kanssa, pakataan partikkeleihin. Partikkelit eksportoidaan sytosliin  ribosomeihin BIOLOGIAN LAITOS, SEPPO SAARELA, 2011

BIOLOGIAN LAITOS, SEPPO SAARELA, 2011 Page 704 Molecular Biology of the Cell (© Garland Science 2008)

Tumakotelo BIOLOGIAN LAITOS, SEPPO SAARELA, 2011 Figure 12-8 Molecular Biology of the Cell (© Garland Science 2008)

Tumahuokoskompleksit rei’ittävät tumakotelon NPC = nuclear pore complex NPC = 125x106 D, koostuu n. 30 NPC-proteiinista = nucleoporins Nukleoporiinit järjestäytyneet oktagonali symmetrian mukaisesti Nisäkässoluissa 3000-4000 NPC:tä NPC:llä valtava kuljetuskapasiteetti Jokainen NPC voi kuljettaa 500 makromolekyyliä sekunnissa molempiin suuntiin samanaikaisesti BIOLOGIAN LAITOS, SEPPO SAARELA, 2011

Pienet <5000 D nopea diffuusio Jokaisella NPC:llä yksi tai useampia vesireittejä, joiden läpi pienet vesiliukoiset molekyylit pääsevät diffundoitumalla Pienet <5000 D nopea diffuusio Suuret proteiinit hitaasti passiivisen diffuusion avulla Suuret > 60 000 D eivät diffuusion avulla Diffuusio riippuvainen NPC:n rakenteesta Miten suuret molekyylit, esim. valmiit ribosomit, DNA- ja RNA-polymeraasit 100 000 – 200 000 D kuljetetaan läpi? Sitoutuvat reseptoriproteiineihin ja kuljetaan aktiivisesti NPC:n läpi? BIOLOGIAN LAITOS, SEPPO SAARELA, 2011

NPC:t tumakotelossa BIOLOGIAN LAITOS, SEPPO SAARELA, 2011 Figure 12-9 Molecular Biology of the Cell (© Garland Science 2008)

Kuljetus tumahuokosen läpi Partikkelit 39 nm saakka kulkeutuvat läpi NPC BIOLOGIAN LAITOS, SEPPO SAARELA, 2011 Figure 12-10 Molecular Biology of the Cell (© Garland Science 2008)

The function of nuclear localization signal (NLS) Immunofluoresenssi mikrografi SV40 viruksen T-antigeeni, joka sisältää NLS:n paikantamissignaalin. BIOLOGIAN LAITOS, SEPPO SAARELA, 2011 Figure 12-11 Molecular Biology of the Cell (© Garland Science 2008)

Aktiivinen kuljetus NPC:n läpi BIOLOGIAN LAITOS, SEPPO SAARELA, 2011 Figure 12-12 Molecular Biology of the Cell (© Garland Science 2008)

Tumakotelon läpi kuljettavat reseptorit BIOLOGIAN LAITOS, SEPPO SAARELA, 2011 Figure 12-13 Molecular Biology of the Cell (© Garland Science 2008)

Kuljetus tumasta ulkopuolelle Valikoiva kuljetus Uudet ribosomaaliset alayksiköt RNA molekyylit Tarvitaan signaaliyksikkö kuljetettavassa makromolekyylissä ja komplementaarinen signaaliyksikkö kuljettavassa reseptorissa rahdin (cargo) viemiseksi tuman ulkopuolelle sytosoliin BIOLOGIAN LAITOS, SEPPO SAARELA, 2011

Ran GTPaasi suuntaa kuljetuksen NPC:n läpi Energia GTP:ltä hydrolyysin avulla Ran löytyy sytosolista ja tumasta Kaksi Ran-spesifistä säätelijäproteiinia triggaa konversion GTPaasia aktivoiva proteiini, GAP käynnistää GTP:n hydrolyysin Tuman guanine exchange factor , GEF käynnistää GDP:n GTP:ksi BIOLOGIAN LAITOS, SEPPO SAARELA, 2011

Guanine exchange factor GTPaasi activated protein BIOLOGIAN LAITOS, SEPPO SAARELA, 2010 Figure 12-14 Molecular Biology of the Cell (© Garland Science 2008)

Kuljetusmalli NPC:n läpi Shuttling proteins BIOLOGIAN LAITOS, SEPPO SAARELA, 2010 Figure 12-15 Molecular Biology of the Cell (© Garland Science 2008)

Kuljettajareseptorin rakenne BIOLOGIAN LAITOS, SEPPO SAARELA, 2011 Figure 12-16a Molecular Biology of the Cell (© Garland Science 2008)

Lastaaminen ja purku BIOLOGIAN LAITOS, SEPPO SAARELA, 2011 Figure 12-16b Molecular Biology of the Cell (© Garland Science 2008)

Tumaan kuljetuksen kontrolloiminen T-solun aktivaation aikana (vieras antigeeni) Vieras antigeeni  intrasellulaarinen Ca Nuclear factor activated T-cell = geenin säätelijä- proteiini Immunosupressiiviset rohdot cyclosporiiniA ja FK506) inhiboivat calcineuriinin defosfo- ryloinin ja NF-AT ja T-solun aktivaation BIOLOGIAN LAITOS, SEPPO SAARELA, 2011 Figure 12-18 Molecular Biology of the Cell (© Garland Science 2008)

Tumakotelon hajoaminen ja uudelleen muodostuminen mitoosin aikana BIOLOGIAN LAITOS, SEPPO SAARELA, 2011 Figure 12-20 Molecular Biology of the Cell (© Garland Science 2008)

Proteiinien kuljettaminen mitokondrioihin BIOLOGIAN LAITOS, SEPPO SAARELA, 2011

BIOLOGIAN LAITOS, SEPPO SAARELA, 2011 Figure 12-21 Molecular Biology of the Cell (© Garland Science 2008)

Sytokromioksidaasin signaalisekvenssi Pun = posit. varau- tunut osa Kel = nonpolaarinen Sin = varautumaton -helix Alkoholidehydrogenaasi, mitokondrion matriksin ents. BIOLOGIAN LAITOS, SEPPO SAARELA, 2011 Figure 12-22 Molecular Biology of the Cell (© Garland Science 2008)

Translokaatiota välittävät proteiinit Liukoisille proteiineille ADP, ATP, fosfaatti Kalvoproteiineille, jotka syntetisoidaan mitokondriossa BIOLOGIAN LAITOS, SEPPO SAARELA, 2011 Figure 12-23 Molecular Biology of the Cell (© Garland Science 2008)

Mitokondrion proteiinien sisäänkuljetus BIOLOGIAN LAITOS, SEPPO SAARELA, 2011 Figure 12-25 Molecular Biology of the Cell (© Garland Science 2008)

Energian merkitys proteiinien kuljetuksessa mitokondrion matriksiin BIOLOGIAN LAITOS, SEPPO SAARELA, 2011 Figure 12-26 Molecular Biology of the Cell (© Garland Science 2008)

Mitokondrion Heat Shock proteiinit HSP70 part of a multisubunit protein assembly Sitoutuu TIM23 kompleksiin Toimii moottorina, joka vetää prekursoriproteiinin matriksiin HSP70:lla suuri affiniteetti laskostumattomaan polypeptidiketjuun Monet sisään kuljetettavat matriksin proteiinit kuljetetaan muiden chaperonien avulla esim. HSP60, auttaa laskostumattoman proteiinin laskostumaan, energia ATP-hydrolyysistä BIOLOGIAN LAITOS, SEPPO SAARELA, 2010

Poriinien integraatio ulkokalvolla BIOLOGIAN LAITOS, SEPPO SAARELA, 2010 Figure 12-27 Molecular Biology of the Cell (© Garland Science 2008)

Proteiinien kuljetus sytosolista mitokondrion sisäkalvolle BIOLOGIAN LAITOS, SEPPO SAARELA, 2011 Figure 12-28 Molecular Biology of the Cell (© Garland Science 2008)

Solun stressiproteiinit kaperoni (engl. chaperone), avustajaproteiini  proteiinin oikea laskostuminen kaperonit avaustavat proteiinien koostamista alayksiköistään T-lymfosyyttien pinnalla olevat T-solureseptorit (alayksiköt: ,,,,,) BIOLOGIAN LAITOS, SEPPO SAARELA, 2011

Kaperoniproteiineja BiP (engl. immunoglobulin heavy chain binding protein) eli Grp78 (glucose-responsive protein) kuuluu HSP70-perheeseen (heat shock protein) HSP-synteesi vaste ympäristön stressiin - stressi: lämpö, UV-säteily, vieraat kemikaalit - pitkittävät solukuolemaa stressitilanteissa BIOLOGIAN LAITOS, SEPPO SAARELA, 2011

Lämpöshokkiproteiiniperheet HSP100 - proteiinikeräytymien purku HSP90 - solun viestinsiiroproteiinien konformaation säätely HSP70 - stabiloivat proteiinien hydrofobisia alueita HSP60 - proteiinien laskostuminen HSP40 - sitoutuvat laskostumattomiin proteiineihin, avustavat HSP70 Pienet HSP:t - estävät proteiinien aggregoitumista BIOLOGIAN LAITOS, SEPPO SAARELA, 2011