Sähköoppi Sähköiset ja magneettiset vuorovaikutukset sekä sähkö energiansiirtokeinona.

Slides:



Advertisements
Samankaltaiset esitykset
Magneettinen vuorovaikutus
Advertisements

4 TEHO.
Resistanssi ja Ohmin laki
Osavuosikatsaus Q Lännen Tehtaat Osavuosikatsaus
Liike- ja potentiaalienergia
Vuorovaikutuksesta voimaan
Sähäkästi sähköstä, makeasti magnetismista
6 VIRTAPIIRIN SUUREIDEN SELITYS KENTÄN AVULLA
tarinaa virrasta ja jännitteestä
Kapasitanssi C Taustaa: + A d E _
5 SÄHKÖINEN VOIMA.
25. Sähkövaraus Atomin rakenne on sähköisesti neutraali.
Keskinäisinduktio Induktiivinen kytkentä Muuntaja Kolmivaihevirta
SATE11XX SÄHKÖMAGNEETTINEN KENTTÄTEORIA (LISÄOSA)
Virtapiirit.
2 VASTUKSET.
Pyörrevirrat TNE FY 7/
SAH105 STAATTINEN KENTTÄTEORIA
Kondensaattori lyhyesti
LT Q1 2007, Lännen Tehtaat Oyj OSAVUOSIKATSAUS Q1/2007 Matti Karppinen Toimitusjohtaja.
Fysiikka2 Jouko Teeriaho syksy 2004.
Virtapiiri.
SATE1110 SÄHKÖMAGNEETTINEN KENTTÄTEORIA
tarinaa virrasta ja jännitteestä
2.1 Sähkömagneettinen induktio
Lännen Tehtaat Vuosi Tulos/osake , euroa IFRS.
Magneettinen vuorovaikutis
Juhani Kaukoranta Raahen lukio 2012
Sähköoppia Elektronin ja protonin varauksen itseisarvoa kutsutaan alkeisvaraukseksi e (protonin varaus on +e ja elektronin –e) Koska atomissa on yhtä monta.
SATE2010 DYNAAMINEN KENTTÄTEORIA
SATE1110 SÄHKÖMAGNEETTINEN KENTTÄTEORIA
Fysiikan ja kemian sanaston luomiseen ja käsitteiden selventämiseen tähtäävä harjoitus. VUOSILUOKILLE 7-9 OTSO JARVA, SAARNILAAKSON KOULU AVAINSANAT ”Virtapiiri.
Sähköisen oppimisen edelläkävijä | 30. Resistanssi on sähkölaitteen kyky vastustaa sähkövirtaa Tavoitteet ja sisältö - resistanssin käsite.
Sähköenergia FY6. 1. Sähkövaraus Sähkövaraus on kappaleen ominaisuus Sähkövaraus on kappaleen ominaisuus Sähkövarauksen tunnus on Q ja yksikkö coulombi.
Sähköisen oppimisen edelläkävijä | 32. Sähkölasku määräytyy käytön mukaan Tavoitteet ja sisältö - Käsitteet energia ja teho - Oppia laskemaan.
13. Nopeus kuvaa liikettä Nopeus on suure, joka kertoo kuinka kappaleen paikka muuttuu ajan suhteen. Nopeus on vektorisuure. Vektorisuureen arvoon liittyy.
FY7. Magneetti Magneettinen vuorovaikutus on etävuorovaikutus. Magneetilla on kaksi kohtiota (N ja S). Saman nimiset kohtiot hylkivät, erinimiset kohtiot.
Kpl 26 Jännite aiheuttaa sähkövirran Syksy Pariston napojen välillä on jännite Paristossa on kaksi päätä eli napaa (+ ja -) Paristossa on kaksi.
Avain Fysiikka 3 | Luku 1 Magneetissa on kaksi napaa, N-napa ja S-napa. Magneetin erinimiset navat vetävät toisiaan puoleensa ja samannimiset navat hylkivät.
Magnetismi Maapalloa ympäröi magneettikenttä. Kestomagneetit pyrkivät asettumaan pohjois-eteläsuuntaan. Kestomagneetin päitä sanotaan suunnan mukaan pohjois-
Elektroniikan komponentit
Virtapiirit.
Määritä vastuksen resistanssi 1
29. Jännite on pariston kyky tuottaa sähkövirtaa
Sähkömagneetti 1 Kytke käämi (180N) paristoon (4,5V), laita käämin sisälle rautasydän. Kokeile rautanaulojen avulla toimiiko sähkömagneetti? Toimiiko sähkömagneetti.
Tiivistelmä 2. Jännite ja sähkövirta
Jännitelähde Jännitteen tunnus on U ja yksikkö on voltti (1 V).
27. Jännite ja sähkövirta mitataan mittarilla
Tiivistelmä 5. Sähkömagneettinen induktio
SÄHKÖ FY61 TNE Mitä sähkö on ja missä sitä tarvitaan?
Vaihtovirta Sähkömagneettinen induktio: magneettikentän muutos synnyttää (indusoi) johtimeen jännitteen. Yksinkertaisessa generaattorissa pyörivä kestomagneetti.
Vuorovaikutus ja voima
Fysiikan käsitteitä AGORA (Pieni oppimäärä) Sähköopin
28. Sähkölaitteet tarvitsevat sähkövirtaa toimiakseen
28. Lamppu vastustaa sähkövirtaa
31. Salama on hankaussähköilmiö
Virtapiiri Sähkövirralla on säteily-, lämpö-, kemiallinen ja magneettinen vaikutus. Virtalähteen energia siirtyy sähkölaitteen energiaksi suljetun virtapiirin.
Pisara 6 Fysiikka ja kemia
Tiivistelmä 6. Sähköteho ja energia
1.3 Ohmin laki ja resistanssi
Sähkövaraus ja sähkökenttä
2. VASTUKSET Ohmin laki ja resistanssi Vastusten sarjaan kytkentä
SÄHKÖOPIN PERUSTEET.
5. Lähdejännite Lähdejännite E kuormittamattoman pariston napajännite
Fysiikka 9 lk Leena Piiroinen 2016.
MAGNEETTINEN VUOROVAIKUTUS
SATE1110 SÄHKÖMAGNEETTINEN KENTTÄTEORIA
Sähkövirta I ja virtatiheys J
Faradayn laki Muuttuva magneettivuon tiheys B aiheuttaa ympärilleen sähkökentän E pyörteen. Sähkökentän voimakkuutta E ei voi esittää skalaaripotentiaalin.
Induktanssin määrittäminen
Esityksen transkriptio:

Sähköoppi Sähköiset ja magneettiset vuorovaikutukset sekä sähkö energiansiirtokeinona.

Sähkövaraus Pienintä sähkövarausta kutsutaan alkeisvaraukseksi. Elektronin varaus negatiivinen ja yhden alkeisvarauksen suuruinen. Protonin varaus positiivinen ja samansuuruinen Elektronit eivät ole niin sidottuja kappaleeseen kuin protonit, joten ne voivat siirtyä kappaleesta toiseen ja saada aikaan kappaleiden varautumisen. Sähköoppia ©HO 2001-2007

Hankaussähkö Kappale varautuu hankauksessa. Elektroneja saanut kappale saa negatiivisen varauksen ja luovuttanut kappale positiivisen varauksen. Kahden kappaleen sähköisten tilojen ero pyrkii tasoittumaan, jolloin niiden välille saattaa syntyä kipinäpurkaus. Tällöin elektronit siirtyvät kappaleesta toiseen ja sähköisten tilojen ero häviää. Sähköoppia ©HO 2001-2007

Sähköinen vuorovaikutus Sähköinen vuorovaikutus voi gravitaatiovuorovaikutuksesta poiketen ilmetä sekä veto- että poistovoimana. Samanmerkkiset varaukset hylkivät toisiaan ja erimerkkiset vetävät toisia puoleensa. Varattu kappale voi olla vuorovaikutuksessa myös alun perin neutraalin kappaleen kanssa polarisaation vuoksi. Sähköoppia ©HO 2001-2007

Polarisaatio Negatiivisesti varautunut kalvo hylkii paperinpalassa olevia elektroneja, jolloin kalvonpuoleinen pää paperista jää positiivisesti varatuksi  vetovoima. Sähköoppia ©HO 2001-2007

Jännite ja sähkövirta Sähköisen tilan eroa kutsutaan jännitteeksi. esim. hangatun ja neutraalin kalvon välillä Jännitteen yksikkö on voltti (1V) Sähköisten tilojen ero tasoittuu elektronien siirtyessä. Tästä virtauksesta käytetään nimitystä sähkövirta. Sähkövirran yksikkö on ampeeri (1A) Sähköoppia ©HO 2001-2007

Virtalähde Virtalähde on laite, joka ylläpitää sähkövirtaa virtapiirissä synnyttämällä virtalähteen napojen välille jännitteen. esim. paristo + - Sähköoppia ©HO 2001-2007

Suljettu virtapiiri Suljettu virtapiiri on sähkövirran kulkureitti, jonka muodostavat johtimet, paristot ja lamput tai muut sähkölaitteet. Pariston napojen välinen jännite pyrkii tasaan-tumaan sähkövirran avulla. Tällöin sähkövirta saa napojen väliin kytketyn lampun hehkumaan. Sähköoppia ©HO 2001-2007

Johteet ja eristeet Johde on aine, jossa sähkövirta pääsee liikkumaan vapaasti. metallit Eristeissä sähkövirta ei kulje. muovi, kumi, posliini,... Sähköä johtavia nesteitä sanotaan elektrolyyteiksi Sähköoppia ©HO 2001-2007

Piirrosmerkeistä Piirrosmerkit helpottavat virtapiirien piirtämistä ja tulkitsemista. Piirrosmerkkien avulla esitetystä kytkennästä eli virtapiiristä käytetään nimitystä kytkentäkaavio. Sähköoppia ©HO 2001-2007

Yleismittarin käyttö Mitattaessa käytetään ensin suurinta mittausaluetta. Tarvittaessa voidaan valita herkempi mittausalue. Sähkövirtaa ei saa koskaan mitata suoraan virtalähteen navoista. Sähköoppia ©HO 2001-2007

Jännitteen mittaaminen Jännitemittarilla voidaan mitata virtalähteen napojen välinen jännite tai virtapiirissä olevan komponentin aiheuttama jännitehäviö. Mitattaessa jännitemittari kytketään pariston tai sähkölaitteen rinnalle. V Sähköoppia ©HO 2001-2007

Virran mittaaminen Mitattaessa virtapiirissä kulkevan virran suuruutta virtamittari kytketään osaksi virtapiiriä siten, että mitattava virta kulkee mittarin läpi. A Sähköoppia ©HO 2001-2007

Paristojen rinnan kytkentä Rinnan kytkennässä paristojen samanmerkkiset navat on yhdistetty. Toiset paristot on siis kytketty alkuperäisen pariston rinnalle. Kokonaisjännite rinnan kytkennässä on sama kuin yksittäisen pariston jännite. Sähköoppia ©HO 2001-2007

Paristojen sarjaan kytkentä Sarjaan kytkennässä paristojen erimerkkiset navat on yhdistetty kytkemällä paristot peräkkäin Sarjaan kytkettyjen paristojen muodostama kokonaisjännite on yksittäisten paristojen jännitteiden summa. Sähköoppia ©HO 2001-2007

Lamppujen kytkennät Lamppu vastustaa virran kulkua. Sarjaan kytketyt lamput aiheuttavat sitä suuremman vastuksen mitä useampi lamppu kytkennässä on. Piirissä kulkee pienempi virta. Rinnan kytkennässä jokaisen lampun läpi pääsee sama virta. Kokonaisvirta piirissä kasvaa. Sähköoppia ©HO 2001-2007

Resistanssi Resistanssi kuvaa komponentin (esim. lampun, johtimen tai vastuksen) sähkövirran kulkua vastustavaa ominaisuutta. Jos komponentti vastustaa paljon sähkövirran kulkua, sillä on suuri resistanssi. Jos komponentti päästää sähkövirran kulkemaan helposti lävitseen, sillä on pieni resistanssi. Resistanssin tunnuksena käytetään R-kirjainta ja yksikkönä on Ω. (ohmi) Sähköoppia ©HO 2001-2007

Resistanssin suuruus Komponentin resistanssin (R) suuruus voidaan määrittää mittaamalla komponentin läpi kulkeva sähkövirta (I) sekä komponentissa tapahtuva jännitehäviö (U). R = U / I Jännitehäviö siis jaetaan sähkövirran suuruudella. Esim. R = 12V / 0,4A = 30Ω Sähköoppia ©HO 2001-2007

Vastus Komponentti, jota käytetään sähkövirran pienentämiseen virtapiirissä. Vastuksen resistanssi ei muutu sähkövirran suuruuden mukaan, vaan on aina sama. Sähköoppia ©HO 2001-2007

Vastusten sarjaan kytkentä Kytkettäessä useampia vastuksia sarjaan (peräkkäin), ne vastustavat sähkövirran kulkua enemmän ja sähkövirta piirissä pienenee. (kuten lampuilla) Kokonaisresistanssi saadaan selville, kun lasketaan resistanssit yhteen. (alla 550Ω) Sähköoppia ©HO 2001-2007

Vastusten rinnan kytkentä Kytkettäessä vastukset rinnakkain, saadaan sähkövirralle kaksi reittiä, joita molempia pitkin se voi kulkea. Kahta reittiä käytettäessä virtapiirissä voi kulkea suurempi virta, joten rinnan kytkennässä kokonaisvirta kasvaa. Kokonaisresistanssin käänteisluku saadaan laskemalla resistanssien käänteislukujen summa. Sähköoppia ©HO 2001-2007

Vastusten rinnan kytkentä Kokonaisresistanssin käänteisluku saadaan resistanssien käänteislukujen summana Eli kokonaisresistanssi saadaan siis Sähköoppia ©HO 2001-2007

Sähkövirta energian siirrossa Energiaa voidaan tuottaa kaukana sen kulutuspaikasta, koska energian siirto on mahdollista johtimia pitkin sähkövirran avulla. Pitkillä siirtomatkoilla pitää käyttää suuria jännitteitä, jotta energiahäviö (lämpö) saadaan mahdollisimman pieneksi. Sähköoppia ©HO 2001-2007

Sähkölaitteen käyttämä energia Sähkölaitteen energiankulutus (tunnus E) riippuu sekä sähkövirran suuruudesta että laitteen käyttöjännitteestä. Sähkölaitteen energiankulutukseen vaikuttaa myös laitteen käyttöaika. E=UIt Energiankulutusta laskettaessa aika sekunteina! => Energian yksikkö J (joule) Sähköoppia ©HO 2001-2007

Sähkölaitteen teho Teho (tunnus P) lasketaan kuten mekaniikan yhteydessä siirtyneen energian määränä tietyssä ajassa. Sijoittamalla tehon yhtälöön E=UIt, saadaan Sähköoppia ©HO 2001-2007

Sähkölaitteen teho Yhtälöstä P=UI voidaan muistikolmion avulla helposti ratkaista mikä tahansa kolmesta suureesta, jos kaksi tunnetaan. Sähköoppia ©HO 2001-2007

Kulutettu energia sähkölaskussa Sähkölaskussa kulutetun energian määrä on ilmoitettu kilowattitunteina (kWh). Kulutetun energian määrä kilowattitunteina lasketaan myös kaavalla E=UIt=Pt, mutta teho merkitään kilowatteina (tuhansina watteina) ja aika tunteina. Laskun suuruus määräytyy kulutetun energian ja energian yksikköhinnan avulla. Sähköoppia ©HO 2001-2007

Kestomagneetti Kiinalaisten tiedetään käyttäneen magneettisesta rautamalmista valmistettua alkeellista kompassia jo 1000-luvulla. Magneettisten kappaleiden välillä on magneettinen etävuorovaikutus, jonka ansiosta kompassin neulakin kääntyy aina pohjoista kohti. Sähköoppia ©HO 2001-2007

Kompassi Kompassin neula, joka on kestomagneetti, pyrkii aina asettumaan pohjois-etelä-suuntaan. Kompassin, kuten muidenkin kestomagneettien pohjoiseen kääntyvää päätä sanotaan pohjois- eli N-kohtioksi Etelään kääntyvää päätä sanotaan etelä- eli S-kohtioksi (tai navaksi). Sähköoppia ©HO 2001-2007

Magneettiset vuorovaikutukset Kestomagneetin samannimiset kohtiot hylkivät toisiaan. Kestomagneetin erinimiset kohtiot vetävät toisiaan puoleensa. Kestomagneetit ovat vuorovaikutuksessa myös magneettisten aineiden, kuten raudan, nikkelin ja koboltin kanssa. Niiden välillä on vetovoima. Sähköoppia ©HO 2001-2007

Magneettikenttä Magneetit ovat vuorovaikutuksessa toistensa kanssa magneettikentän välityksellä. Magneettikenttää kuvataan kenttäviivoilla, jotka alkavat eteläkohtiosta ja päättyvät pohjoiskohtioon. Maan magneettikentän arvellaan aiheutuvan sulan raudan liikkeestä maan sisällä. Sähköoppia ©HO 2001-2007

Rautakappaleen magnetoiminen Rautakappale voidaan magnetoida sivelemällä sitä kestomagneetilla yhdensuuntaisin vedoin. Jos magnetoitu rautakappale katkaistaan, saadaan kaksi magneettia, joissa molemmissa on sekä pohjois- että etelänavat Rautakappaleen magneettisuuden voi poistaa takomalla tai kuumentamalla. Sähköoppia ©HO 2001-2007

Sähkövirta aiheuttaa magneettikentän Kun virtajohtimessa laitetaan kulkemaan sähkövirta, johtimen ympärille syntyy magneettikenttä. Johtimen ympärillä magneettikentän kenttäviivat ovat ympyröitä. Jos oikealla kädellä tarttuu johtimesta kiinni siten, että peukalo osoittaa sähkövirran kulkusuuntaan, niin magneettikentän suunta on muiden sormien osoittamaan suuntaan. Sähköoppia ©HO 2001-2007

Käämi Kun johdin pyöräytetään ympyrän muotoiseksi, saadaan silmukan sisälle magneettikenttä, jonka suunta on kohtisuoraan silmukan läpi Kun johdin kierretään useammalle silmukalle, saadaan voimakkaampi magneettikenttä. Tällaisesta rullatusta johtimesta käytetään nimeä käämi. Sähköoppia ©HO 2001-2007

Sähkömagneetin voimakkuus Käämin kierrosten lukumäärää lisäämällä saadaan sähkömagneettia voimistettua. Mitä suurempi sähkövirta johtimessa kulkee, sitä voimakkaamman magneettikentän se aiheuttaa. Sähkömagneetin voimakkuutta voidaan kasvattaa myös lisäämällä käämin sisään rautasydän. Sähköoppia ©HO 2001-2007

Sähkömagneetin sovelluksia Sähkömoottori Kaiutin, mikrofoni Soittokellot, releet Kuvaputket, (tv, tietokone) Video- ja kasettinauhojen tallennus Muuntajat (ks. kappale 8) Magneettijarrut, nosturit,… Sähköoppia ©HO 2001-2007

Liike sähkövirraksi Muuttuva magneettikenttä aiheuttaa eli indusoi käämiin jännitteen. Käämiin indusoituvan jännitteen suuruuteen vaikuttavat käämin kierrosten lukumäärä, magneetin voimakkuus ja liikuttelunopeus sekä rautasydän. Indusoitunut jännite synnyttää sähkövirran, kun käämi laitetaan osaksi suljettua virtapiiriä Mekaanisesta energiasta voidaan tuottaa sähkövirtaa generaattorilla. Sähköoppia ©HO 2001-2007

Generaattori Generaattorissa käämi eli ankkuri pyörii kahden tai useamman kestomagneetin välissä, jolloin niiden aiheuttama magneettikenttä muuttuu koko ajan käämin suhteen. Ankkurin päiden välille syntyy vaihtojännite, joka aiheuttaa vaihtovirran, kun käämin päät kytketään virtapiiriin. Polkupyörän dynamokin on generaattori. Suuria generaattoreita käytetään voimalaitoksissa. Sähköoppia ©HO 2001-2007

Generaattorin tuottama jännite Generaattorin tuottama jännite on vaihtojännitettä, eli sen suuruus ja napaisuus muuttuu jaksollisesti. Aika Sähköoppia ©HO 2001-2007

Vaihtojännite ja vaihtovirta Vaihtojännitteen taajuus kertoo sekunnissa olevien jaksojen määrän. Yhdessä jaksossa napaisuus vaihtuu kahdesti, joten vaihtojännitteen aiheuttaman vaihtovirran suunta muuttuu myös kahdesti jakson aikana. Pistorasiassa vaihtojännitteen taajuus on 50Hz, joten sen aiheuttama vaihtovirta muuttaa suuntaansa 100 kertaa sekunnissa. Sähköoppia ©HO 2001-2007

Vaihtojännitteen muuntaminen Muuntaja koostuu kahdesta eri kokoisesta käämistä ja niitä yhdistävästä rautasydämestä. Suojajännitteelliset sähkölaitteet toimivat pienellä jännitteellä, joten niille tarvitaan muuntaja. Muuntaja muuttaa 230V verkkojännitteen pienemmäksi. Sähköoppia ©HO 2001-2007

Muuntajan toiminta Ensiökäämissä kulkeva vaihtovirta synnyttää rautasydämeen muuttuvan magneettikentän. Rautasydämen muuttuva magneettikenttä indusoi toisiokäämiin vaihtojännitteen, joka saa aikaan toisiopuolen vaihtovirran. Sähköoppia ©HO 2001-2007

Muuntajan toiminta Ideaalisen muuntajan vaihtojännitteen muuntosuhde on suoraan verrannollinen käämien kierrosten lukumäärään. Käytännössä aivan yhtä hyviin muuntosuhteisiin ei päästä, sillä osa energiasta muuttuu lämmöksi. Sähköoppia ©HO 2001-2007