Lähettimet ja vastaanottimet

Slides:



Advertisements
Samankaltaiset esitykset

Advertisements

ULTRAÄÄNI Joni Vesterback, m85768.
Luku 2 – Tietoliikenteen tekniikka
Yhdistetty M-ary ASK ja M-ary PSK Timo Mynttinen1 Yhdistetty M-ary ASK ja M-ary PSK Tähän asti on kerrallaan käytetty yksinomaan joko amplitudia, taajuutta.
FSK-Frequency Shift Keying
T moduulikoulutus Someron hamssit 2006 OH1TF, OH2NAK, OH3BHL, OH6LI
Lähettimet ja vastaanottimet
Marjo Yli-Paavola, OH3HOC
Vaihemodulaatio Vaihemodulaatio ja taajuusmodulaatio muistuttavat suuresti toisiaan. Jos moduloidaan kantoaallon vaihekulmaa, niin samalla tullaan moduloiduksi.
PSK - Phase Shift Keying Timo Mynttinen1 PSK-Phase Shift Keying PSK:ssa informaatio koodataan moduloidun signaalin hetkelliseen vaihekulmaan. Tavallisesti.
Radioliikenne. Historiaa Radion historia (Wikipedia)Radion historia (Wikipedia) Merkittävät pioneerit –Michael Faraday ( ), elektromagneettinen.
Ubuntu - peruskäyttö Seuraavassa läpikäydään Ubuntun peruskäyttöä: Perustoiminnot Sisäänkirjautuminen Työpöytä Uloskirjautuminen Lähteinä on käytettu Ubuntu.
Matemaattisten aineitten ryhmä Nurmon yläasteella.
HEATEX-system on ainutlaatuinen energiansäästöjärjestelmä.
Matematiikkaa 3 a Kertausjakso – Geometria MATEMATIIKKAA 3 A © VARGA–NEMÉNYI RY 2016.
VAIHELUKKOTEKNIIKKA JA TAKAISINKYTKETYT DEMODULAATTORIT KULMAMODULAATION ILMAISUSSA Vaihtoehtoinen ilmaisumenetelmä kulmamodulaatioille? A Tietoliikennetekniikka.
Matematiikkaa 3 a Kertausjakso – Laskuja MATEMATIIKKAA 3A, KERTAUSJAKSO LASKUJA © VARGA–NEMÉNYI RY 2016.
ANALOGISET PULSSIMODULAATIOT PAM, PWM JA PPM Millä eri tavoilla signaalinäyteet voidaan esittää & koodata? A Tietoliikennetekniikka I Osa 20 Kari.
Lähettimet ja vastaanottimet OH3TR:n radioamatöörikurssi.
OH3TR:n radioamatöörikurssi Marjo Yli-Paavola, OH3HOC
Kuvaruutuvideot Tommi Saksa, 2008, HAMK.
Bridgekurssi BK-Slam ª©¨§
Amplitudimodulaatio Amplitudimodulaatiossa moduloiva signaali muuttaa kantoaallon voimakkuutta eli amplitudia. Kantoaallon taajuus pysyy koko ajan samana.
Lähettimet ja vastaanottimet
Toimisto-ohjelmat TVT osana Sädettä.
CoreFinland oy RIPS
Ihmisen elinkaari Psykologia jpe.
Yleistajuisemman artikkelin kirjoittaminen
Arviointi Hyökkälän koulussa lv
Opeka-kyselyn tulokset
Tampereen teknillinen yliopisto 2017
Peda.netin oma tila Luo peda.netin omaan tilaasi sivu Hiekanpään koulu 7-9lk Lisää sivun lukijoiksi kaikki sinua opettavat opettajat Tee sivun alle uusi.
Kuva- ja videosignaalinen käsittely / Kari Jyrkkä
4 Työ, teho ja hyötysuhde.
Signaalinkäsittelyn sovellukset
Vinkkivideo työnhausta
L7 Sovellus Koulutusrekisteri
toista 12 kertaa käännä kortti lähetä käännetty
Laskutusprosessin tavoitetilan kuvaus
Edellisen kerran yhteenveto
Murtoluku Murtoluku on jakolasku, jota ei ole laskettu loppuun asti.
Aalto-yliopiston ylioppilaskunta
Skanssin monitoimitalon tarveselvitys
5. Lähdejännite Lähdejännite E kuormittamattoman pariston napajännite
2C Metsätalouden veroilmoituksen täyttäminen verkkolomakkeella
Rajoitteet Iäkkään henkilön hoidossa käytetylle fyysiselle rajoittamiselle ei ole olemassa yhtä yleispätevää määritelmää. Yhteistä rajoitteille on kuitenkin.
Radioamatööritoiminta
Spektri- ja signaalianalysaattorit
TYNKÄSIVUKAISTAMODULAATIO (VSB)
Muutokset matematiikan opetuksessa
KVANTISOINTIKOHINA JA AWGN-KOHINAN vaikutus PULSSIKOODIMODULAATIOSSA
Polut hoitoon ja kuntoutukseen – projekti OTE7
Signaalien datamuunnokset
LUKU 7 TÄRKEIMPIEN ASIOIDEN KERTAUS
Oodin version 3.7 yhteenveto
Asiointipalveluiden laatu - Asiakasarvioinnit
Vapaaohjelman arvostelulomakkeen täyttäminen
Menetelmiä signaali/kohina-suhteen parantamiseksi
Kevät 2015 TAAJUUDEN SIIRTO JA SEKOITUS — VÄLITAAJUUSVASTAANOTIN eli SUPERHETERODYNEVASTAANOTTO Millaista analogista signaalinkäsittelyä suoritetaan radiosignaalin.
Ylinäytteistetyt A/D-muuntimet
Kevät 2015 EPÄLINEAARISET KULMAMODULAATIOT — VAIHEMODULAATIO (PM) JA TAAJUUSMODULAATIO (FM) Miten PM ja FM eroavat toisistaan? Millainen on kapeakaistainen.
LUKU 3 ANALOGISET KANTOAALTO- JA PULSSIMODULAATIOMENETELMÄT
MONITILAISET TIEDONSIIRTOMENETELMÄT TÄRKEIMPIEN ASIOIDEN KERTAUS
OTA TÄMÄ VIESTI VAKAVASTI!
Jos jonain päivänä Jos jonain päivänä tuntuu siltä että
Lämpö ja infrapunasäteily
Wind Power in Power Systems
Sähköenergian varastoinnin sovelluskohteet sähköverkoissa
Harjoitus 1, tehtävä 4c) 0, 2,3, 1, 4, 5, 6, 7 ack 1 ack1 ack1 ack4 ….. ack 8 ack 9 ack10 8 ja 9 koska ikkunaan mahtuu 10, 11, ... Koska ikkunaan.
Toroidit ja muut ferriitit
Esityksen transkriptio:

Lähettimet ja vastaanottimet OH3NE:n radioamatöörikurssi

Aiheitamme tänään Kaiken perusta: värähtelijä eli oskillaattori Vastaanottimet: värähtelijän avulla alas radiotaajuudelta Lähettimet: värähtelijä tuottaa radiotaajuuden Modulaattorit ja demodulaattorit eri lähetelajeille sama vastaanotin, eri demodulaattori Modulaattori: informaation liittäminen kantoaaltoon

Värähtelijä Värähtelee eli oskilloi tietyllä taajuudella Kiinteätaajuuksisia sekä säädettäviä (esim VCO) Invertteriä voi käyttää värähtelijänä, mutta se on hallitsematon Käytetään resonanssipiiriä (~suodatin) asettamaan taajuus Vaihelukittu silmukka ja VCO Taajuussyntetisaattori

Invertoiva vahvistin värähtelijänä

Kidevärähtelijä Kideoskillaattori: Kiteen vastinkytkentä:

Muita oskillaattoreita eli värähtelijöitä Yhteen tai useampaan transistoriin perustuvat oskillaattorit Yhden taajuuden oskillaattorit: esim. kideoskillaattori Säädettävät: VCO = jänniteohjattu oskillaattori Kaikissa sama perusidea:

Lähettimet Lähetystaajuuden muodostamisen peruselementti on siniaalto-oskillaattori vakaa taajuus vakaa amplitudi puhdas spektri Takaisinkytketty vahvistin

COPA, crystal oscillator – power amplifier Kiinteätaajuuksinen kideoskillaattori

Taajuuskertojaan perustuva lähetin VFO – Bufferi – Kertoja - PA Kertojan avulla päästään useille HF-bandeille, koska bandit ovat harmonisessa suhteessa toisiinsa. Esim. 3,5 MHz * 2 = neljänkympin bandi

Sekoittaminen Kun kaksi taajuutta sekoitetaan, syntyy tuloksena sekä summa että erotus. fo = f1 + f2 ja fo = | f1 – f2 |

Sekoitukseen perustuva lähetin Sekoitusperiaatteella toimiva VFO (variable frequency oscillator) toimii suht. matalalla taajuudella, esim 5,0 … 5,5 MHz Kutakin aluetta varten oskillaattorissa oma kide Vakaampi ja haluttu taajuus sekoituksen jälkeen Sekoitusasteen jälkeen esim. 5,3 MHz + 9 MHz = 14,3 MHz Edelleen paljon käytössä, mm. SSB-lähettimissä

Nykyaikaisin menetelmä Toiminnan perustana myös tarkka kideoskillaattori, johon säädettävän oskillaattorin taajuus lukitaan Taajuussyntetisaattori kehittää siitä halutun taajuuden ”matematiikan avulla” (10 MHz/10*3 + 10 MHz/100*6 + 10 MHz/1000*9 …)

Lähettimien haasteita Spektrin puhtaus, harhalähetteet (harmoniset) Teho ja lineaarisuus tehoalueen yläpäässä Modulaation oikea määrä Avainiskut CW-lähettimessä Taajuuden stabiilius, ryömintäongelmat lämmetessä

Vastaanottimet Kidevastaanotin, suora vastaanotin Q-kertoja Suora superi Sekoittaminen välitaajuus, peilitaajuus paikallisoskillaattori Supervastaanotin

Kidevastaanotin Kaikkein yksinkertaisin vastaanotin. Ei tarvitse ulkopuolista virtaa toimiakseen Epäselektiivinen, hankala säädettävä Voidaan vastaanottaa AM-lähetyksiä Antenni Suurtaajuusosa, taajuuden valinta - resonanssipiiri Erottaa informaation kantoaallosta (ST = suurtaajuus)

Kidevastaanotin Hyvin yksinkertainen vastaanotin: resonanssipiiri suurtaajuusosa ilmaisin

Suora vastaanotin Kidekoneesta hieman paranneltu versio, periaate sama Ilmaisu tapahtuu suurtaajuudella! Yksinkertainen Vaikea saada selektiiviseksi ST = suurtaajuus PT = pientaajuus Tehon- syöttö

Q-kertoja ”Parannetaan” resonanssipiirin Q-arvoa tuomalla piiriin samanvaiheisena suurtaajuusenergiaa Selektiivisyys paranee Q-kertoja on viritettävä vahvistinaste, joka kompensoi virityspiirissä tapahtuvia häviöitä  pienemmät häviöt  suurempi Q-arvo Käytännössä vanhentunutta tekniikkaa

Sekoittaminen (oli jo!) Kun kaksi taajuutta sekoitetaan, syntyy tuloksena sekä summa että erotus. fo = f1 + f2 ja fo = | f1 – f2 |

Sekoituksen kaksi tulosta: Esim: f1 = 91,6 MHz f2 = 10,7 MHz fo = 102,3 MHz ja 80,9 MHz P f f2 – f1 f1 f2 f1 + f2

Suorasekoitusvastaanotin PO:n värähtely ja antennista tuleva signaali sekoitetaan Saadaan taajuuksien erotus kuuloalueella Asemien erottelu tehtävä ilmaisimen jälkeen (pt-aste) Epäselektiivinen Käy myös SSB:n ilmaisemiseen Ulkoiset tehonsyötöt jätetty kuvasta pois (ST = suurtaajuus, PT = pientaajuus, PO = paikallisoskillaattori)

Supervastaanotin Superheterodynevastaanotin, superi AM:llä ja CW:llä verhokäyräilmaisin, SSB:llä tuloilmaisin Selektiivisyys välitaajuusosalla Voi olla useita välitaajuuksia ”Nykytekniikkaa” Apuvärähtelijä = BFO = Beat Frequency Oscillator

Superin ongelma, peilitaajuus f1 = 28 MHz f2 = 27,550 MHz  fo = 450 kHz Mutta entä jos… f1 = 27,100 MHz ?  fo = 450 kHz ??!!?? Sekoituksen toinen, ei-haluttu tulos, on ns. peilitaajuus.

Peilitaajuus on välitaajuuden verran paikallisoskillaattorin HT PO PT f vt vt Peilitaajuus on välitaajuuden verran paikallisoskillaattorin taajuuden toisella puolella mitä hyötytaajuus

Kaksoissuperi Kolmoissuperi ….

Vastaanottimien haasteita Harhatoistot (peilitaajuus, ylimääräiset sekoitustulokset radion sisällä) Herkkyys: kuinka pieniä signaaleja voidaan kuulla Lähellä olevien voimakkaiden signaalien sietokyky (tukkeutuuko) = selektiivisyys Omien sisäisten häiriöiden sietokyky: välitaajuinen signaali voi olla 90 dB isompi kuin antennista sisään tuleva huolellinen kotelointi ja osastointi!

Seuraavaksi tietoa modulaatioista – sitten puhutaan siitä, miten lähetintä moduloidaan tai vastaanottimessa demoduloidaan.

Modulointi Lisätään kantoaaltoon informaatio Perinteiset katkotaan kantoaaltoa: CW muutetaan kantoaallon amplitudia (esim. vahvistimen biasta): AM Tästä kehittyneempi: SSB muutetaan kantoaallon taajuutta (jänniteohjatulla oskillaattorilla): FM Digitaaliset vaihemodulaatioihin tarvitaan vaihelukko (PLL), esim. IQ, QAM useimmat digimodet voi tehdä moduloimalla SSB-lähete ”robottiäänellä”

Modulointi ja demodulointi: AM ja CW Yksinkertaisesti suurtaajuusvahvistimen vahvistusta säätämällä Demodulointi: Verhokäyräilmaisu, esim. diodi- ilmaisin Huom: Sähkötys nopeaa, saa olla nopea AGC (vahvistuksen säätö); AM:llä hidas CW:llä voi käyttää jopa 100 Hz suodatinta

FM-vastaanotin diskriminaattorilla FM muita amatöörilähetteitä leveämpää Ilmaisu taajuusdiskriminaattorissa Eri taajuuksia vahvistetaan eri verran: joitakin taajuuksia sorsitaan eli diskriminoidaan

Modulointi ja demodulointi: SSB Kantoaalto tukahdutetaan balansoidussa modulaattorissa → DSB Toinen sivukaista tukahdutetaan kidesuodattimella → LSB tai USB Demodulointi: Ilmaisu tuloilmaisimella (product detector) = sekoittimella (BFO kertaa SSB-signaali) Tarvitaan apuoskillaattori (BFO) luomaan kantoaalto Huom: Ilmaisu mutkikasta, käytännössä aina välitaajuudella

Modulointi ja demodulointi: FM Esim. vaihelukitulla silmukalla, jossa moduloiva signaali summataan VCO:n ohjausjännitteeseen Demodulointi: Ensin signaali limitoidaan (amplitudivaihtelut pois) Diskriminaattorilla muunnetaan FM→AM, sitten ilmaistaan AM Diskriminaattori: esim. suodatin, joka vaimentaa eri taajuuksia eri verran Vaihtoehtona kvadratuuri-ilmaisu: signaali sekoitetaan viivästetyn itsensä kanssa

Modulointi ja demodulointi: kuvia kaksoisbalansoitu sekoitin SSB:n modulointiin (Wikimedia commons, piirtänyt しまでん) kaksoisbalansoitu sekoitin PLL:llä toteutettu FM-modulaattori

Eri modulaatioiden vaatimuksia lähettimille SSB-moduloitu signaali pitää vahvistaa niin, että signaalin aaltomuoto pysyy kunnossa Vaatii A-luokan vahvistimen (vahvistaa signaalin molemmat puolijaksot) A-luokan vahvistimella huono hyötysuhde mutta kaunis ulostulosignaali Pätee myös ”SSB-moduloiduille” digilähetteille CW-signaalin aaltomuodolla ei ole niin väliä Voidaan vahvistaa C-luokan vahvistimella (vahvistaa vain osan puolijaksoa) C-luokan vahvistimella hyvä hyötysuhde, mutta ulostulosta pitää suodattaa harhalähetteitä pois

Eri modulaatioiden vaatimuksia vastaanottimille FM-vastaanottimen pitää olla tarpeeksi leveä

Nykyaikaa… DSP (digitaalinen signaalinkäsittely) mahdollistaa hyvin kapeat suodattimet Puolijohteilla saadaan jo kilowatin tehoja, mutta putket ovat silti yleisiä tehovahvistimissa (”linukoissa”). Gigahertseille pääsee helpoimmin transvertterillä: signaali tuotetaan 2 m radiolla transvertterillä muodostetaan moduloidusta 2 m signaalista 10 GHz lähete

Kertaus: TX Lähettimessä pitää olla: signaalilähde (oskillaattori) Lähettimessä kannattaa olla lisäksi: modulaattori päätevahvistin suodatin (alipäästö-) Lähettimessä voi olla lisäksi: sekoitin (kiinteä oskillaattori & säädettävä oskillaattori) oskillaattorissa kide tai RC-piiri tai taajuuskertoja tai…

Kertaus: RX Vastaanottimessa pitää olla: ilmaisin eli demodulaattori Vastaanottimessa kannattaa olla lisäksi: suodatin tai useita oskillaattori tai useita kiteellä tai ilman sekoitin tai useita vahvistin tai useita (esivahvistin (voi olla erikseen), välitaajuusvahvistin, pientaajuusvahvistin ym. Vastaanottimessa voi olla lisäksi: automaattinen vahvistuksen säätö AGC kapea CW-suodin ym. herkkuja tunnistatko superin?

Vinkkejä tenttikysymyksiin Opettele laskemaan peilitaajuus. Piirrä vaikka kuva. Peilitaajuus on 2*välitaajuuden päässä hyötytaajuudesta, paikallisoskillaattorin toisella puolella. Supervastaanottimesta kysytään aina jotakin. Sekoituksen idea A-/B-/C-vahvistinluokkien idea ja käyttö

Tenttikysymyksiä + – – + + – – – Tavalliseen kideohjattuun lähettimeen kuuluu ( ) pääteaste ( ) ilmaisin ( ) välitaajuusvahvistin ( ) kideoskillaattori + – – + Supervastaanottimessa suurtaajuisen signaalin muuttaminen välitaajuiseksi tehdään ( ) sekoittimen ja paikallisoskillaattorin avulla ( ) ilmaisimella ( ) pientaajuusvahvistimella ja apuoskillaattorilla ( ) vasta kuulokkeissa + – – –

Tenttikysymyksiä – – – + – + + – Supervastaanottimen paikallisoskillaattorin taajuus on 450,100 MHz ja antennista tulevan signaalin taajuus on 432,100 MHz. Välitaajuus voi olla ( ) 470 kHz ( ) 9,100 MHz ( ) 10,700 MHz ( ) 18,000 MHz – – – + Lähettimen päätevahvistin ( ) vaimentaa antennisignaalin vastaanottimelle sopivaksi ( ) vahvistaa pientehoisia suurtaajuussignaaleja ( ) vahvistaa lähettimessä muodostetun suurtaajuussignaalin ( ) värähtelee lähetystaajuudella – + + –