ERILAISIA LOHKOKOODAUSMENETELMIÄ 1 521361A Tietoliikennetekniikka II Osa 23 Kari KärkkäinenSyksy 2015.

Slides:



Advertisements
Samankaltaiset esitykset
S ysteemianalyysin Laboratorio Aalto-yliopiston teknillinen korkeakoulu Esitelmä 10 – Juho Kokkala Optimointiopin seminaari - Syksy 2010 Kernel-tasoitus.
Advertisements

Virheen havaitseminen ja korjaus
ERILAISIA LOHKOKOODAUSMENETELMIÄ
JOHDANTO VIRHEENKORJAAVAAN KOODAUKSEEN ─ KANAVAKOODAUSMENETELMÄT
LÄHTEENKOODAUS.
TURBOKOODAUS.
INFORMAATIOTEORIA & KOODAUS TÄRKEIMPIEN ASIOIDEN KERTAUS
Tietoliikennetekniikka II AKari KärkkäinenOsa 24 1 (10) LOHKOKOODATUN JA KOODAMATTOMAN JÄRJESTELMÄN SUORITUSKYKYJEN VERTAILU.
KANTATAAJUINEN BINÄÄRINEN SIIRTOJÄRJESTELMÄ AWGN-KANAVASSA
AS Automaation signaalinkäsittelymenetelmät
Lineaarinen lohkokoodaus, Block Coding
5. Lineaarinen optimointi
S ysteemianalyysin Laboratorio Teknillinen korkeakoulu Esitelmä 2 - Jirka Poropudas Optimointiopin seminaari - Kevät 2005 / 1 Bayes-verkoista s
5. Fourier’n sarjat T
Ubuntu - peruskäyttö Seuraavassa läpikäydään Ubuntun peruskäyttöä: Perustoiminnot Sisäänkirjautuminen Työpöytä Uloskirjautuminen Lähteinä on käytettu Ubuntu.
Matematiikkaa 3 a Kertausjakso – Geometria MATEMATIIKKAA 3 A © VARGA–NEMÉNYI RY 2016.
TURBOKOODAUS Miten turbokoodaus eroaa konvoluutiokoodauksesta? A Tietoliikennetekniikka II Osa 26 Kari KärkkäinenSyksy 2015.
Vuokaaviot. 2.2 Sisällys Kaavioiden rakenne. Kaavioiden piirto symboleita yhdistelemällä. Kaavion osan toistaminen silmukalla. Esimerkkejä: − algoritmi.
SYMBOLIVIRHETODENNÄKÖISYYDESTÄ BITTIVIRHETODENNÄKÖISYYTEEN
Matematiikkaa 3b © Varga–Neményi ry 2017
Matematiikkaa 3a, Kertausjakso Lukuja © Varga–Neményi ry 2016
MITÄ UUTTA? Tekstiviestihälytysjärjestelmä Toimikunta- ja maakuntarajat pois Hälytysryhmän jokaisen jäsenen tiedot päähälyttäjien lisäksi (väh. nimi,
Bridgekurssi BK-Slam ª©¨§
Bridgekurssi BK-Slam ª©¨§
Toimisto-ohjelmat TVT osana Sädettä.
Tietokanta (database) on kokoelma tietoja, jotka liittyvät tavalla tai toisella toisiinsa (esim. henkilö -> auto -> katsastus aika -> …) Tietokannan (relaatiomalli)
Kuvioiden tekeminen excelillä
INFORMAATIOTEORIA & KOODAUS TÄRKEIMPIEN ASIOIDEN KERTAUS
BINÄÄRISET TIEDONSIIRTOMENETELMÄT TÄRKEIMPIEN ASIOIDEN KERTAUS
13. Pakkaukset.
PILKKU.
Poikkeustenkäsittelylohkot try-catch
Sähköinen avustushaku
VaR-mallien toimivuuden testaus historian avulla (backtesting)
Sähköisen hyvinvointikertomus hyvinvointiklinikalla
Analyyttiset menetelmät VAR:n määrittämisessä
Ristiinvalidointi ja bootstrap-menetelmä kotitehtävän 14 ratkaisu
Tekstinhuoltoa 3.
15. Lohkot.
Foreach-toistolause foreach-rakenteella on kätevä käydä läpi kaikki taulukon alkiot. Erityisen kätevää se on hajautustaulukon tapauksessa, jossa taulukon.
SUUREET JA MITTAAMINEN
Murtoluku Murtoluku on jakolasku, jota ei ole laskettu loppuun asti.
Kenguru-kilpailu.
Istuntojen hallinta PHP-sovelluksessa
Rakenteisen kertomuksen käyttöönotto DH:ssa
15. Lohkot.
ATK70d / Ohjelmointi 1 Kuplalajittelu © Helia / Jukka Harju, 2004.
Palauta 4 tehtävää, Viimeistään klo 23
TILASTOKUVIO kuvio on voimakkain tapa esittää tietoa
JOHDANTO VIRHEENKORJAAVAAN KOODAUKSEEN ─ KANAVAKOODAUSMENETELMÄT
Syöpäilmoitus sähköisesti
TYÖPOHJA KESKUSTELUN SUUNNITTELUUN
Kysely Varsinais-Suomen maakunnan verkkopalveluista Maria Nykyri /muutosorganisaation viestintäyksikkö Elokuu 2018.
Muutokset matematiikan opetuksessa
KVANTISOINTIKOHINA JA AWGN-KOHINAN vaikutus PULSSIKOODIMODULAATIOSSA
Tilaustoimitusprosessin kuvaus
WinOodi versio 4.4 Katri Laaksonen
LUKU 1 TIETOLIIKENNEJÄRJESTELMIEN ANALYYSI
Vapaaohjelman arvostelulomakkeen täyttäminen
KANTATAAJUINEN BINÄÄRINEN SIIRTOJÄRJESTELMÄ AWGN-KANAVASSA
LOHKOKOODATUN JA KOODAMATTOMAN JÄRJESTELMÄN SUORITUSKYKYJEN VERTAILU
MONITILAISET TIEDONSIIRTOMENETELMÄT TÄRKEIMPIEN ASIOIDEN KERTAUS
Powerpoint-esitelmä Valitse omaan alaasi liittyvä aihe ja valmistele esitelmä Powerpointilla.
Mitä uutta töissä.fi-palveluun?
Ohjeistus Etene tässä olevien ohjeiden mukaan.
PERHEPÄIVÄHOIDON TUTKINTOTOIMIKUNNALLE
Tervetuloa uuteen PowerPointiin
8. Periytyminen.
TYÖPOHJA KESKUSTELUN SUUNNITTELUUN
Dynamic Reporting (DR) -raporttien teon parhaat käytännöt
Esityksen transkriptio:

ERILAISIA LOHKOKOODAUSMENETELMIÄ A Tietoliikennetekniikka II Osa 23 Kari KärkkäinenSyksy 2015

HAMMING-ETÄISYYS & MINIMIETÄISYYS Hamming-etäisyys: d i j =HW(s i  s j ), Minimietäisyys: d min =min(d ij )  i,j. (n,k)-koodi korjaa t virhettä, jossa t =  d m –1  /2 ja d min = 2  t + 1. Syksy A Tietoliikennetekniikka II Osa 23 Kari Kärkkäinen 2

HAMMING-ETÄISYYS & MINIMIETÄISYYS Nähdään ongelma: jos n ja k suuria lukuja, dekoodaustaulukosta tulee suuri, eikä taulukkohakuun perustuva etäisyyksien laskenta ja vertailu ole enää järkevää. Syksy A Tietoliikennetekniikka II Osa 23 Kari Kärkkäinen 3

VIRHEEN ILMAISEVAT PARITEETINTARKISTUSKOODIT A Tietoliikennetekniikka II Osa 23 Kari KärkkäinenSyksy 2015

PARITEETINTARKISTUS VIRHEEN ILMAISEMISEEN Yksinkertaisin korjaamiseen kykenemätön koodi toteutetaan pariteetintarkistusbitillä. Saadaan (k+1,k)-lohkokoodi, jonka koodisuhde on k/(k+1). Kaikkien n = k+1 -pituisten sanojen Hamming- painoksi (ykkösten lkm), sovitaan joko parillinen tai pariton luku. Sanan paino lasketaan modulo-2 summalla (exclusive-or): 0  0 = 0, 0  1 = 1, 1  0 = 1, 1  1 = 0). Jos sanassa parillisen määrä virheitä, niin niitä ei pystytä ilmaisemaan. Jos virheiden määrä on pariton, dekooderi havaitsee parittoman määrän virheitä (tn. on kuitenkin tapahtunut vain yksi virhe). Syksy A Tietoliikennetekniikka II Osa 23 Kari Kärkkäinen 5

VIRHEEN ILMAISEVAT JA KORJAAVAT TOISTOKOODIT A Tietoliikennetekniikka II Osa 23 Kari KärkkäinenSyksy 2015

TOISTOKOODIT Yksinkertaisin virheenkorjaava koodi saadaan toistamalla kutakin informaatiosymbolia n kertaa. Informaatiosymbolia kohden lähetetään siis n–1 pariteettibittiä, joten koodisuhde = 1/n. (n,1)-lohkokoodilla on siis käytössä vain kaksi laillista sanaa: , tai , joista tehdään dekoodauspäätös {0}, jos enemmistö vastaanotetuista biteistä on nollia, ja {1}, jos enemmistö on ykkösiä. Toistokoodaus vastaa efektiivisesti modulaation kannalta katsottuna informaatiobitin energian (z = E b /N 0 :n) kasvattamista, jolloin P E pienenee (informaation siirtonopeus vastaavasti pienenee). Toistokoodi on tehokkain koodausmenetelmä P E :n minimoimismielessä siirtonopeuden kustannuksella, kun n lähenee ääretöntä (vie äärettömän kauan aikaa). Sillä voidaan siis helposti toteuttaa Shannonin 2. teoreeman lupaus. Toiston haittapuoli on pieni koodisuhde 1/n (vastaa hyvin suurta redundanssin määrää). Syksy A Tietoliikennetekniikka II Osa 23 Kari Kärkkäinen 7

TOISTOKOODIEN DEKOODAUS 1/3 -dekoodauksessa kriteerinä Hamming-etäisyyden minimiarvo. Boolen-logiikalla toteutettuna se vastaa tässä 3-tuloisen enemmistölogiikkaportin (majority logic gate) lähtöä. Siksi n oltava pariton luku. Syksy A Tietoliikennetekniikka II Osa 23 Kari Kärkkäinen 8

ESIMERKKI 1 (S) Syksy A Tietoliikennetekniikka II Osa 23 Kari Kärkkäinen 9

SUORITUSKYKY KOODISUHTEEN 1/n FUNKTIONA (S) Syksy A Tietoliikennetekniikka II Osa 23 Kari Kärkkäinen 10

YHDEN VIRHEEN KORJAAVAT LINEAARISET PARITEETINTARKISTUSKOODIT A Tietoliikennetekniikka II Osa 23 Kari KärkkäinenSyksy 2015

YHDEN VIRHEEN PARITEETINTARKISTUSKOODIT Pariteetintarkistuskoodeilla on suuri informaationopeus (n-1)/n  1, mutta olematon korjauskyky. Toistokoodeilla on pieni 1/n, mutta toisaalta hyvä virheenkorjauskyky. Hyvillä koodeilla em. ominaisuudet yhdistyvät kompromissina (ei voida saavuttaa samanaikaisesti). Tarkastelemme nyt pariteetintarkistuskoodeja, joissa yhdistyy kohtuullinen informaationopeus ja yhden virheen korjauskyky (t = 1). Koodisanassa a 1 a 2 a 3...a k c 1 c 2...c r, a i :t informaatiosymboleita ja c j :t pariteetintarkistussymboleita. Koodisanan pituus n = k + r. Ongelmana on löytää sopiva r:n arvo, jotta saavutetaan hyvä korjauskyky t =  d m –1  /2 kohtuullisen suurella koodisuhteella k/n. Sallittuja koodisanoja on 2 k kpl ja virheellisesti mahdollisesti vastaanotettuja sanoja on 2 n – 2 k kpl. Shannon osoitti, että kun n  , valitsemalla satunnaisesti 2 n - suuruisesta avaruudesta n-pituinen sana kullekkin 2 k informaatio- sanalle, saadaan useimmiten d min -arvoltaan hyvä koodi (d i,j  n/2). Dekoodaus onnistuu vain sanoja laillisten sanojen taulukkoon vertaamalla. Iso taulukko  haku & d ij :n laskenta vie aikaa. Syksy A Tietoliikennetekniikka II Osa 23 Kari Kärkkäinen 12

YHDEN VIRHEEN PARITEETINTARKISTUSKOODIT Shannonin opetus: Jopa aivan täysin satunnaisesti valitut koodit ovat ihan hyviä virheenkorjauskyvyn kannalta (suuri koodausvahvistus), mutta perusongelma on, että satunnaiselta koodilta puuttuu sisäinen matemaattinen rakenne. Dekoodaustaulukon käyttö on siksi hankalaa, koska etäisyyksien laskenta vie aikaa ja muistia. Siksi koodisuunnittelussa tarvitaan avuksi matemaattista teoriaa, jotta koodaus ─ ja ennen kaikkea dekoodaus ─ on helposti ja nopeasti toteutettavissa elektroniikalla tai prosessorilla. Tarkastellaan koodausalgebran keinoin strukturoituja menetelmiä, joilla k bitin sana kuvataan n bitin lohkoksi ja dekoodataan helposti. r kpl pariteettibittejä toteuttavat lineaarisen yhtälöryhmän: Syksy A Tietoliikennetekniikka II Osa 23 Kari Kärkkäinen 13

YHDEN VIRHEEN PARITEETINTARKISTUSKOODIT [H] = pariteetintarkistusmatriisi, [T] = koodisanavektori Vastaanotettu sana on [R]. Jos [H][R] ≠ [0], tiedetään, että [R] ei ole sallittu koodisana, eli [R] ≠ [T], ja ainakin yksi virhe on tapahtunut. Toisaalta, jos [H][R] = [0], niin [R] on sallittu koodisana, ja jos symbolivirhetodennäköisyys on pieni, se mitä todennäköisimmin on myös lähetetty sana (ei ole sattunut 2 toisiaan kumoavaa virhettä). Koska [R] on vastaanotettu sana, se voidaan kirjoittaa muotoon [R] = [T]  [E], missä [E] on kanavan aiheuttama n-pituinen virhevektori. Dekoodausongelma pelkistyy vektorin [E] määrittämiseen, sillä koodisana voidaan palauttaa lailliseksi [R]:n ja [E]:n yhteenlaskulla ([E]:n paino HW(E) sama kuin virheiden lkm.). Syksy A Tietoliikennetekniikka II Osa 23 Kari Kärkkäinen 14

YHDEN VIRHEEN PARITEETINTARKISTUSKOODIT Ensimmäiseksi – siis [E]:n laskemiseksi – kerrotaan [R] vasemmalta puolelta [H] -matriisilla. Matriisia [S] kutsutaan syndroomaksi, eli oirevektoriksi. [S] = [H]  [R] = [H]  [T]  [H]  [E], eli [S] = [H]  [E], koska [H]  [T] = 0. [E] ei voida ratkaista suoraan kaavasta [S] = [H]  [E], koska [H] ei ole neliömatriisi ja [H] –1 ei siten ole olemassa. Sen sijaan oletetaan, että on tapahtunut vain yksi virhe, jolloin virhevektori on muotoa: [E] = [ ] T, eli HW(E) = 1. Kertomalla [E] vasemmalta puolelta matriisilla [H] osoittaa, että oirevektori [S] on matriisin [H] i:s sarake, missä virhe on paikassa i. Virheenkorjausproseduuri: Kerrotaan [H]:lla vasemmalta [R] ja verrataan saatua [S]-vektoria [H]:n sarakkeisiin. Sama sarakkeen arvo kertoo tn. virheen paikan i. Useamman virheen tapauksessa menetelmä ei toimi. Edellä siis oletettiin P E pieneksi, jolloin Hamming-painon 1 omaava virhevektori [E] on kaikkein todennäköisin. Syksy A Tietoliikennetekniikka II Osa 23 Kari Kärkkäinen 15

ESIMERKKI 2 Syksy A Tietoliikennetekniikka II Osa 23 Kari Kärkkäinen 16 = =

YHDEN VIRHEEN PARITEETINTARKISTUSKOODIT [A] = k:n informaatiobittien vektori, [G] = generoijamatriisi, [I] = m  m yksikkömatriisi, [H] = pariteetintarkistusmatriisi, jonka sanotaan olevan systemaattisessa muodossa, kun [H] = [H p  I r ]. Syksy A Tietoliikennetekniikka II Osa 23 Kari Kärkkäinen 17

GENEROIJAMATRIISI  KOODERIN RAKENNE Syksy A Tietoliikennetekniikka II Osa 23 Kari Kärkkäinen 18 a2a2 t3t3 t2t2 t1t1 (3,2)-koodi (1 pariteettibitti,parillinen pariteetti) 00     110 a1a1  a1a1 t3t3 t2t2 t1t1 Toistokoodi (n=3) 0   111 a1a1 t2t2 t4t4 t3t3 a2a2 a4a4 t7t7 t6t6 t5t5 (7,4)-koodi a3a3  t1t1  Systemaattinen, koska infobitit sellaisenaan.

PARITEETINTARKISTUSKOODIEN OMINAISUUKSIA Systemaattisilla koodeilla informaatiobitit sisältyvät sellaisenaan koodisanaan pariteettibittien seassa (eivät siis ole useamman informaatiobitin funktioita). Pariteettibitit on puolestaan laskettu informaatiobiteistä kullekkin koodille ominaisella matemaattisella säännöllä. Sopivien sääntöjen eli [H]-matriisien etsintä on koodimatemaatikkojen työtä. Systemaattisen koodin informaatiobitit voivat sijaita, joko yhdessä sanan alussa tai lopussa, tai ripoteltuna pitkin koodisanaa. Niiden ei myöskään tarvitse olla alkuperäisessä järjestyksessä päästä lukien. Jos ne sijaitsevat ryhmiteltynä esim. alussa, niin siitä seuraa, että H tulee kätevästi ns. systemaattiseen muotoon: [H] = [H p  I r ]. [I r ] on r  r -matriisi ja H p on r  (n–r) = r  k -matriisi. Epäsystemaattisen koodin sanan kaikki bitit ovat jollakin funktiolla riippuvaisia useista eri informaatiobiteistä. Epäsystemaattisessa koodisanassa ei siis enää esiinny puhtaita informaatiobittejä sellaisenaan. Syksy A Tietoliikennetekniikka II Osa 23 Kari Kärkkäinen 19

PARITEETINTARKISTUSKOODIEN OMINAISUUKSIA (S) [G]-matriisin määrittelemiä koodeja sanotaan lineaarisiksi koodeiksi, koska n = k+r koodisymbolia on muodostettu k:n informaatiosymbolin lineaarikombinaationa. Matriisialgebrasta tiedetään, että lineaarinen yhtälöryhmä vastaa matriisia. Lisäksi on olemassa ominaisuus, että jos kaksi erilaista k:n bitin informaatiojonoa modulo-2 -summataan (XOR) saaden kolmas jono, niin summajonoa vastaava koodisana on kahta summattua vastaavien koodisanojen summa. [A 3 ] = [A 1 ]  [A 2 ], [A 3 ]:sta vastaava koodisana [T 3 ] = [G][A 3 ] = [G]{[A 1 ]  [A 2 ]} = [G][A 1 ]  [G][A 2 ] = [T 1 ]  [T 2 ]. Koodeja, jotka täyttävät ehdon: [T 3 ] = [T 1 ]  [T 2 ], sanotaan ns. ryhmäkoodeiksi (group codes). Kalvosarjan 22 sivun 37 koodi oli tuollainen ryhmäkoodi. Syksy A Tietoliikennetekniikka II Osa 23 Kari Kärkkäinen 20

HAMMING-KOODIT A Tietoliikennetekniikka II Osa 23 Kari KärkkäinenSyksy 2015

HAMMING-KOODIT Hamming-koodit olivat ensimmäisiä virheenkorjaavia koodeja (nimetty keksijän Richard W. Hammingin mukaan). Ne ovat erityisiä yhden virheen korjaavia pariteetintarkistuskoodeja, joilla on minimietäisyys d min = 3. Hamming-koodeja arvoille: (n,k,t) = (2 m – 1, 2 m – 1– m,1), m = 2,3,... Tunnetuimmia lineaarisia enemmän virheitä korjaavia (t > 1 ja d min > 3) koodeja ovat esimerkiksi BCH-koodit (Bose-Ray-Chaudhuri- Hocquenghem), Golay –koodi (23,12), jatkettu Golay –koodi (24,12), Reed-Müller -koodit, Reed-Solomon -koodit (ei-binäärisiä symbolikoodeja), jotka on yleensä nimetty keksijöidensä mukaan. Pariteetintarkistusmatriisilla on dimensiot (2 n–k –1)  (n–k) ja se on hyvin helppo konstruoida: Hamming-koodin pariteetintarkistus- matriisin [H] i:s sarake on numeron i binäärinen lukuvastine. Tällä koodilla on em. ominaisuudesta johtuen sellainen mielenkiintoinen ominaisuus, että yhden virheen tapauksessa myös oiresana [S] on virheen paikan järjestysnumeron binäärinen vastine. Syksy A Tietoliikennetekniikka II Osa 23 Kari Kärkkäinen 22

HAMMING-KOODIT — ESIMERKKI 3 Syksy A Tietoliikennetekniikka II Osa 23 Kari Kärkkäinen 23

SYKLISET KOODIT A Tietoliikennetekniikka II Osa 23 Kari KärkkäinenSyksy 2015

SYKLISET KOODIT Edellä tarkasteltu pariteetintarkistuskoodien matemaattisia ominaisuuksia, emmekä emme tarkastelleet kooderien ja dekooderien toteutusta. Toteutuksen, ja erityisesti dekoodauksen (virheen etsinnän ja korjauksen), yksinkertaisuus on oleellista. Dekooderin kovo voi lohkokoodien tapauksessa olla varsin monimutkainen. Erikoistapauksen yksinkertaisesta dekooderin toteutuksesta pariteetintarkistuskoodeille muodostaa sykliset koodit. Kooderi ja dekooderi voidaan toteuttaa takaisinkytketyllä siirtorekisterigeneraattorilla. Sykliset koodit ovat systemaattisia: informaatiobitit mukana sellaisenaan koodisanassa, alkuun ryhmiteltynä) Generoijamatriisista [G] riippuva generoijapolynomi g(x) määrittelee koodin lineaarisen takaisinkytketyn siirtorekisterigeneraattorin (LFSRG) takaisinkytkennän rakenteen. Polynomeja g(x) on taulukoitu valmiiksi koodausteorian oppikirjoissa erilaisille (n,k,t) -kombinaatioille. Syksy A Tietoliikennetekniikka II Osa 23 Kari Kärkkäinen 25

SYKLISET KOODIT Syklinen koodi: Sanan syklinen permutaatio on aina joku toinen laillinen joukon koodisana. Jos esim. x 1 x 2 x 3 x 4...x n–1 x n on koodisana, niin myös x n x 1 x 2 x 3 x 4...x n–1 on. Seuraavan sivun kooderilla voidaan generoida kaikki 2 k = 2 4 = 16 laillista koodisanaa. Kyseessä on (n,k) = (7,4) syklinen koodi. Käytössä modulo-2 –summaus (XOR). Siirtorekisteri on alussa täytetty nollilla ja kytkin on A-asennossa 4 kellojakson ajan. Kytkin siirty B-asentoon infobittien syötön jälkeen, jossa asennossa se on 3 kellojakson ajan, jonka jälkeen kytkin siirtyy takaisin A- asentoon. n–k siirron jälkeen rekisteri sisältää n–k = 3 pariteettibittiä liitettäväksi infobitteihin koodisanan loppuun. LFSRG:n tila siirtyy aina oikealle. Siirtorekisteri jää lopussa nollatilaan ja on valmis vastaanottamaan seuraavan 4 bitin lohkon. Syksy A Tietoliikennetekniikka II Osa 23 Kari Kärkkäinen 26

ESIMERKKI 4: SYKLINEN (7,4)-KOODERI (S) Syksy A Tietoliikennetekniikka II Osa 23 Kari Kärkkäinen 27

ESIMERKKI 4: SYKLINEN (7,4)-DEKOODERI (S) Koodin infobitit sanan alussa. Ylempi on varastorekisteri. Aluksi kytkin A kiinni ja B auki. Vastaanotetut bitit molempiin rekistereihin. Jos bittivirheitä ei tapahtunut, alemman rekisterin tila on lopussa nollasana (on siis oiresana = 0). Sen jälkeen kytkimien paikat vaihdetaan. Jos bittivirhe tapahtui, eli lopussa rekisterissä oleva oiresana ≠ 0, niin virhe korjautuu (bitin kääntö) automaattisesti kombinaatio- logiikkapiirissä. Nähdään, että dekooderin päätteleminen vaikeaa, jopa pienillä (n,k)-arvoilla. Syksy A Tietoliikennetekniikka II Osa 23 Kari Kärkkäinen 28

BCH-KOODIT (S) A Tietoliikennetekniikka II Osa 23 Kari KärkkäinenSyksy 2015

BCH-KOODIT (S) BCH-koodit ovat Hamming -tyyppisten koodien yleistys mahdollistaen useampien virheiden korjaamisen  d min > 3, t > 1. Ne ovat myös tehokas syklisten koodien luokka, joilla on laaja lohkon pituuden n, koodisuhteen k/n ja korjauskyvyn t (d min ) valikoima. Syksy A Tietoliikennetekniikka II Osa 23 Kari Kärkkäinen 30

BCH-KOODIEN GENEROIJAPOLYNOMEJA (S) Syksy A Tietoliikennetekniikka II Osa 23 Kari Kärkkäinen 31

BCH-KOODIEN GENEROIJAPOLYNOMEJA (S) Syksy A Tietoliikennetekniikka II Osa 23 Kari Kärkkäinen 32

LINEAARISTEN KOODIEN SUORITUSKYKYKUVAAJIA (S) Paljonko lohkokoodeilla saadaan koodausvahvistusta? A Tietoliikennetekniikka II Osa 23 Kari KärkkäinenSyksy 2015

LOHKOKOODIEN SUORITUSKYKY (S) Syksy A Tietoliikennetekniikka II Osa 23 Kari Kärkkäinen 34 Suuri koodausvahvistus, kun t >>1 (d min suuri). Koodisuhde k/n on kuitenkin pieni (paljon redundanssia pariteetti- bittien muodossa). Demodulaattorin lähdössä näkyvä modulaatiomenetelmään liittyvä kanavavirhetn., joka näkyy kanavadekooderin tulossa. Dekooderin lähdössä näkyvä korjauksen jälkeinen virhetn. on siis pienempi, jos dekooderi ei generoi lisävirheitä.

LOHKOKOODIEN SUORITUSKYKY (S) Syksy A Tietoliikennetekniikka II Osa 23 Kari Kärkkäinen 35

LOHKOKOODIEN SUORITUSKYKY (S) Syksy A Tietoliikennetekniikka II Osa 23 Kari Kärkkäinen 36