Esittely latautuu. Ole hyvä ja odota

Esittely latautuu. Ole hyvä ja odota

TIN, Keilaniemi 30.10.2003 Global energy view Tuomo Suntola.

Samankaltaiset esitykset


Esitys aiheesta: "TIN, Keilaniemi 30.10.2003 Global energy view Tuomo Suntola."— Esityksen transkriptio:

1 TIN, Keilaniemi Global energy view Tuomo Suntola

2 Global energy view TIN, Keilaniemi 30.10.2003 Tuomo Suntola
1. World Energy Council objectives and scenarios 1. Energiavarastojen inventaario, luonnon energiavirrat ja tuotettu energia 2. Energian käytön jakautuminen, saatavuus ja tuotantotarpeet 3. Sähkön tuotannon reaalivaihtoehdot, ilmastouhat 4. Auringon energian hyödyntämisvaihtoehtoja 5. Energian tie primäärilähteestä käyttökohteeseen, vetyteknologia 6. Hiilen kierto maapallon ekosysteemissä

3 Luonnonfilosofian seura
Tieteiden talo klo 18.00 Maapallon energiavarat Tkt Tuomo Suntola 1. Energiavarastojen inventaario, luonnon energiavirrat ja tuotettu energia 2. Energian käytön jakautuminen, saatavuus ja tuotantotarpeet 3. Sähkön tuotannon reaalivaihtoehdot, ilmastouhat 4. Auringon energian hyödyntämisvaihtoehtoja 5. Energian tie primäärilähteestä käyttökohteeseen, vetyteknologia 6. Hiilen kierto maapallon ekosysteemissä

4 Technical Options for a more Sustainable Future
- Improved Energy Efficiency - especially at the point of end-use in buildings, electric appliances, vehicles, and production processes. - More Renewable Energy: such as biomass, wind, solar, hydro, and geothermal - Advanced Energy Technologies: next generation fossil fuel and carbon sequestration technologies nuclear technologies, if the issues can be resolved.

5 Global Mean Temperature Change
INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC)

6 Mauna Loa measurement on atmospheric CO2 content
500 450 CO2 (ppm) 400 350 300 250 200 1900 1950 2000 2050

7 Global Mean Temperature Change
CO2 development INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC)

8 Global Primary Energy Scenarios Global Primary Energy Scenarios
Nakicenovic Nakicenovic IIASA 2003 IIASA 2003

9 Global Mean Temperature Change
INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC)

10 World Electricity Demand by Regions
Consumption of electricity MWh / year / capita North America 12 OECD Pacific Western Europe 8 Russia & Eastern Europe Latin America East Asia 4 Middle East & North Africa China India Rest of the world 1000 2000 3000 4000 5000 6000 Population, cumulative [millions of people]

11 France – Mobility by Travel Mode (passenger-kilometers per day per person)
Grübler IIASA 1998

12 US oil productions mimic discoveries
Grübler IIASA 1998

13 Will non Middle East oil mimic discoveries?

14

15 World Primary Energy

16 Brazil – Ethanol Learning Curve
200 200 200 200 Source: Goldemberg, 1996 Producer price Producer price Producer price Producer price 150 150 150 150 30 % cost reduction 30 % cost reduction 30 % cost reduction 30 % cost reduction for each doubling for each doubling for each doubling for each doubling Oil-equivalent price $/bbl 100 100 100 100 of cum. production of cum. production of cum. production of cum. production Cumulative Cumulative Cumulative Regression Regression Regression Regression subsidy subsidy subsidy Estimated 1billion $ 1billion $ 1billion $ “Subsidy” 50 50 50 50 $2billion 0.6 billion $ 0.6 billion $ 0.6 billion $ ? Oil price Oil price Oil price Oil price 0.3 billion $ ? 0.3 billion $ ? 0.3 billion $ ? Data: Data: Data: Goldenberg Goldenberg Goldenberg , 1996 , 1996 , 1996 1978 1978 1978 1978 1985 1985 1985 1985 1988 1988 1988 1988 1990 1990 1990 1990 1995 1995 1995 1995 10 10 10 10 20 20 20 20 30 30 30 30 Cumulative production 10 6 bbl Cumulative production 10 Cumulative production 10 Cumulative production 10 6 6 6 bbl bbl bbl Grübler IIASA 2002

17 Evolution of Global Primary Energy
Nakicenovic TU-Wien & IIASA 2003

18 Evolution of Global Primary Energy
Nakicenovic TU-Wien & IIASA 2003

19 Evolution of Global Primary Energy
Nakicenovic TU-Wien & IIASA 2003

20 Global energy sources and reserves
Annual solar insolation: TW = Gtoe/y (=> 100 million nuclear power stations) Proven earth reserves, TWy Energy production: 15 Twy/y = 12 Gtoe/y ( => x 1 GW power stations) Coal: 8000 Oil: 200 Natural gas: 250 Uranium: 100

21 Global energy sources and reserves
Annual solar insolation: TW = Gtoe/y Biomass: 600 TWy -renewal: 80 TW Proven earth reserves, TWy Energy production: 15 Twy/y = 12 Gtoe/y Coal: 8000 Oil: 200 Natural gas: 250 Uranium: 100

22 Global energy sources and reserves
Annual solar insolation: TW = Gtoe/y Hydro: 1 TW Biomass: 600 TWy -renewal: 80 TW Proven earth reserves, TWy Energy production: 15 Twy/y = 12 Gtoe/y Coal: 8000 Oil: 200 Natural gas: 250 Uranium: 100

23 Global energy sources and reserves
Annual solar insolation: TW(y/y) = Gtoe/y Hydro: 1 TW Biomass: 600 TWy -renewal: 80 TW Wind: 0.5 TW Proven earth reserves, TWy Energy production: 15 TW = 12 Gtoe/y Coal: 8000 Oil: 200 Natural gas: 250 Uranium: 100

24 Global energy balances
Biomass 1,5 TW Solid land biomass production 80 TW Fossil fuel 12 TW Forestry 7% Agriculture 4% Electricity by fossil 1,2 TW Popul. 1% Hydro 0,25 TW Nuclear 0,22 TW Solid land biomass production: 0,1 % of solar insolation Energy production: 0,01 % of solar insolation

25 Energy balances in Finland
Biomass production 28 GWy/y Energy production 35,4 GWy/y Fossil fuels 22 GWy/y Forestry industry Hydro power 13 GWy/y Agriculture 1,7 GWy/y 1,6 GWy/y Nuclear power Biomass 2,1 GWy/y 4,6 GWy/y Population 0,5 GWy/y Combustion based electricity 3,1 GWy/y Solid land biomass production: 0,1 % of solar insolation Energy production: 0,15 % of solar insolation

26 Energy balances in France
Energy production 280 GWy/y Biomass production 120 GWy/y Agriculture residues Hydro electricity 55 GWy/y Fossil fuels 7 GWy/y 160 GWy/y Agriculture Forestry products Industry Nuclear electricity 7 Population 5 GWy/y 35 GWy/y 38 GWy/y GWy/y Biomass Combustion based electricity 7 GWy/y Solid land biomass production: 120 GWy/y = 0,2 % of solar insolation Energy production: 280 Gwy/y = 0,45 % of solar insolation

27 Luonnonfilosofian seura
Tieteiden talo klo 18.00 Maapallon energiavarat Tkt Tuomo Suntola 1. Energiavarastojen inventaario, luonnon energiavirrat ja tuotettu energia 2. Energian käytön jakautuminen, saatavuus ja tuotantotarpeet 3. Sähkön tuotannon reaalivaihtoehdot, ilmastouhat 4. Auringon energian hyödyntämisvaihtoehtoja 5. Energian tie primäärilähteestä käyttökohteeseen, vetyteknologia 6. Hiilen kierto maapallon ekosysteemissä

28 Primary energy scenario for 1900 - 2050
Other, new ? Solar Wind Nuclear Global energy production TW 30 Oil Oil 20 Gas Gas to liquid & Advanced coal 10 Conventional coal Advanced biomass Conventional biomass Hydro 1900 1950 2000 2050

29 Primary energy scenario for 1900 - 2050
Other, new ? Solar Wind Nuclear Global energy production TW 30 Oil Oil Gas 20 Gas to liquid & Advanced coal 10 Conventional coal Advanced biomass Conventional biomass Hydro 1900 1950 2000 2050 2100

30 Luonnonfilosofian seura
Tieteiden talo klo 18.00 Maapallon energiavarat Tkt Tuomo Suntola 1. Energiavarastojen inventaario, luonnon energiavirrat ja tuotettu energia 2. Energian käytön jakautuminen, saatavuus ja tuotantotarpeet 3. Sähkön tuotannon reaalivaihtoehdot, ilmastouhat 4. Auringon energian hyödyntämisvaihtoehtoja 5. Energian tie primäärilähteestä käyttökohteeseen, vetyteknologia 6. Hiilen kierto maapallon ekosysteemissä

31 Global production of electricity 1900 - 2100
4000 GW TOTAL Fossil Hydro Nuclear Wind Solar Biomass 3000 2000 1000 1900 1950 2000 2050 2100 Year

32 Global production of electricity 1900 - 2100
10000 GW TOTAL Fossil Hydro Nuclear Wind Solar Biomass 1000 100 10 1 0,1 1900 1950 2000 2050 2100 Year

33 Global production of electricity 1900 - 2100
4000 GW TOTAL Fossil Hydro Nuclear Wind Solar Biomass 3000 2000 1000 1900 1950 2000 2050 2100 Year

34 Global production of electricity 1900 - 2100 increased wind and solar
10000 GW TOTAL Fossil Hydro Nuclear Wind Solar Biomass 1000 100 10 1 0,1 1900 1950 2000 2050 2100 Year

35 Global production of electricity 1900 - 2100 increased wind and solar
4000 GW TOTAL Fossil Hydro Nuclear Wind Solar Biomass 3000 2000 1000 1900 1950 2000 2050 2100 Year

36 Mauna Loa measurement on atmospheric CO2 content
380 CO2(ppm) 370 360 350 340 330 320 310 1955 1965 1975 1985 1995 2005

37 Luonnonfilosofian seura
Tieteiden talo klo 18.00 Maapallon energiavarat Tkt Tuomo Suntola 1. Energiavarastojen inventaario, luonnon energiavirrat ja tuotettu energia 2. Energian käytön jakautuminen, saatavuus ja tuotantotarpeet 3. Sähkön tuotannon reaalivaihtoehdot, ilmastouhat 4. Auringon energian hyödyntämisvaihtoehtoja 5. Energian tie primäärilähteestä käyttökohteeseen, vetyteknologia 6. Hiilen kierto maapallon ekosysteemissä

38 Alternatives for solar insolation to electricity conversion
Biomass / fossil fuels Sun - biomass - (fossil fuels) -combustion - turbine - generator - power grid 0,001 (total) 0,3 0,95 0,01 0,4 Solar thermal Sun - heat collector - turbine -generator - power grid 0,2 (total) 0,8 0,25 0,95 0,1(total) Photovoltaic Sun - solar panels - inverter - power grid 0,12 0,9

39 Distribution of the earth area
Buildings, roads, ect < 0,5 % Cropland 3 % Pasture 6,5 % Forests 8,1 % Deserts ect 9,4 % Oceans 73 % Area of solar panels needed for all present production of electricity 0,02 %

40 Luonnonfilosofian seura
Tieteiden talo klo 18.00 Maapallon energiavarat Tkt Tuomo Suntola 1. Energiavarastojen inventaario, luonnon energiavirrat ja tuotettu energia 2. Energian käytön jakautuminen, saatavuus ja tuotantotarpeet 3. Sähkön tuotannon reaalivaihtoehdot, ilmastouhat 4. Auringon energian hyödyntämisvaihtoehtoja 5. Energian tie primäärilähteestä käyttökohteeseen, vetyteknologia 6. Hiilen kierto maapallon ekosysteemissä

41 Energy products: from source to end-user
- Availability, convenience, cost, emissions, energy efficiency Industry, metallurgy / chemicals / pulp&paper Households, heat / lightning / appliances Traffic, car / heavy / public / rail / sea / air Crude oil Natural gas Coal Peat Biomass, residues & waste Bio-products, cultivated Hydro potential Wind potential Solar insolation Nuclear - availability - cost - emissions - energy efficiency

42 Energy products: from source to end-user
- Availability, convenience, cost, emissions, energy efficiency Industry, metallurgy / chemicals / pulp&paper Households, heat / lightning / appliances Traffic, car / heavy / public / rail / sea / air Electricity Heat Crude oil Natural gas Coal Peat Biomass, residues & waste Bio-products, cultivated Hydro potential Wind potential Solar insolation Nuclear - availability - cost - emissions - energy efficiency

43 Energy products: from source to end-user
- Availability, convenience, cost, emissions, energy efficiency Industry, metallurgy / chemicals / pulp&paper Households, heat / lightning / appliances Traffic, car / heavy / public / rail / sea / air Electricity Heat Liquid fuels Gasoline / diesel / kerosene Ethanol, methanol Crude oil Natural gas Coal Peat Biomass, residues & waste Bio-products, cultivated Hydro potential Wind potential Solar insolation Nuclear - availability - cost - emissions - energy efficiency

44 Energy products: from source to end-user
- Availability, convenience, cost, emissions, energy efficiency Industry, metallurgy / chemicals / pulp&paper Households, heat / lightning / appliances Traffic, car / heavy / public / rail / sea / air Electricity Natural gas Heat Gases Hydrogen Liquid fuels Gasoline / diesel / kerosene Ethanol, methanol Crude oil Natural gas Coal Peat Biomass, residues & waste Bio-products, cultivated Hydro potential Wind potential Solar insolation Nuclear - availability - cost - emissions - energy efficiency

45 Energy products: from source to end-user
- Availability, convenience, cost, emissions, energy efficiency Industry, metallurgy / chemicals / pulp&paper Households, heat / lightning / appliances Traffic, car / heavy / public / rail / sea / air Electricity Natural gas Heat Gases Hydrogen Liquid fuels Gasoline / diesel / kerosene Coal, peat, wood-chips&pellets Solid fuels Ethanol, methanol Crude oil Natural gas Coal Peat Biomass, residues & waste Bio-products, cultivated Hydro potential Wind potential Solar insolation Nuclear - availability - cost - emissions - energy efficiency

46 Energy products: from source to end-user
- Availability, convenience, cost, emissions, energy efficiency Industry, metallurgy / chemicals / pulp&paper Households, heat / lightning / appliances Traffic, car / heavy / public / rail / sea / air Energy products Electricity Natural gas Heat Gases Hydrogen Liquid fuels Gasoline / diesel / kerosene Coal, peat, wood-chips&pellets Solid fuels Ethanol, methanol Crude oil Natural gas Coal Peat Biomass, residues & waste Bio-products, cultivated Hydro potential Wind potential Solar insolation Nuclear - availability - cost - emissions - energy efficiency

47 Hydrogen production € / GJ Crude oil Natural gas 5 Coal 10 Peat
Biomass, residues & waste 15 Bio-products, cultivated Hydro 10 Wind potential 30 Solar insolation 50 Nuclear 20

48 Energy cost comparison
20 € per GJ 10 Coal Oil Gas H2 fossil H2 renew. Petrol Elect.

49 Combustion energies of selected substances
mol.w. kJ/mol kJ/g=GJ/ton toe / ton MWh / ton Hydrogen H2 2 285,8 142,90 3,52 39,69 Methane CH4 16 890,8 55,68 1,37 15,46 Carbon C 12 393,5 32,79 0,81 9,11 Methanol CH3OH 32 726,1 22,69 0,56 6,30 Carbon monoxide CO 28 283,0 10,11 0,25 2,81 toe 40,61 11,28

50 H2 cost / production alternatives
€ / GJ Natural gas reforming (central) 5-8 Other fossil (oil POX, coal gasification) Natural gas reforming (LNG) Natural gas on site reforming Biomass gasification Electrolysis (hydroelectricity) Electrolysis (wind) Electrolysis (solar thermal) Photoelectrolysis

51 Luonnonfilosofian seura
Tieteiden talo klo 18.00 Maapallon energiavarat Tkt Tuomo Suntola 1. Energiavarastojen inventaario, luonnon energiavirrat ja tuotettu energia 2. Energian käytön jakautuminen, saatavuus ja tuotantotarpeet 3. Sähkön tuotannon reaalivaihtoehdot, ilmastouhat 4. Auringon energian hyödyntämisvaihtoehtoja 5. Energian tie primäärilähteestä käyttökohteeseen, vetyteknologia 6. Hiilen kierto maapallon ekosysteemissä

52 Carbon distribution in nature
Atmosphere 700 Gt Forests 450 Gt Grass, ect Gt Oil & gas Coal Gt Oceans 300 Gt Gt Soil Gt Sediment layer Gt ?

53 Carbon circulation in nature
Atmosphere 700 Gt 60 Gt/y 100 Gt/y Forests 450 Gt Grass, ect Gt Oil & gas Coal Gt Oceans 300 Gt Gt Soil Gt Sediment layer Gt ?

54 Carbon circulation in nature
Atmosphere 700 Gt 60 Gt/y 6 Gt/y 100 Gt/y Forests 450 Gt Grass, ect Gt Oil & gas Coal Gt Oceans 300 Gt Gt Soil Gt Sediment layer Gt ?

55 Carbon circulation in nature
Atmosphere 700 Gt 60 Gt/y 6 Gt/y 50 Mt/y 100 Gt/y Forests 450 Gt Grass, ect Gt Oil & gas Coal Gt Oceans 300 Gt Gt Soil Gt Sediment layer Gt ?

56 Carbon distribution in atmosphere and oceans
6 Gt annual CO2 emissions 700 Gt atmosphere Natural CO2 exchange 100 Gt/y 50 Mt annual SOx emissions 700 Gt m surface layer Oceans Gt Gt deep oceans

57 Reaction equations and the calculation procedure for the multiphase CaCO3-CO2-H2O system in the presence of sulfuric acid - concentrations - activities, pH - partial pressures - equilibrium constants - T and p - standard H, C, S data - model for GE Solver for minimum (G)

58 Equilibrium between CO2 pressure and ocean at different temperatures
P(CO2)/bar 8E-4 6E-4 Effect of annual acid rain in 1 meter surface layer CO2 pressure in the atmosphere 4E-4 T=25 C T=15 C T= 5 C 2E-4 2E-4 4E-4 6E-4 8E-4 1E-3 CaCO3 mol/kg

59 Equilibrium between CO2 pressure and ocean at different temperatures
p(CO2) [bar] 4,000E-04 T=25 C Annual increase in the p(CO2) pressure Effect of annual acid rain in 1 meter surface layer 3,500E-04 T=15 C 3,000E-04 T= 5 C 2,500E-04 2,000E-04 5,000E-04 5,500E-04 6,000E-04 6,500E-04 7,000E-04 CaCO3 [mol/kg]

60 SOx reference level 50 Mt(S)/year
Effect of SOx emissions on atmospheric CO2 equilibrium 1,2 1 SOx reference level 50 Mt(S)/year 0,8 0,6 0,4 0,2 1900 1950 2000 2050 500 450 CO2 (ppm) 400 350 CO2(Mauna Loa) 300 250 200 1900 1950 2000 2050

61 Global Warming & Climate Change
“The average global temperature is rising sharply due to increasing concentrations of greenhouse gases (GHGs) in the atmosphere. This rise in temperature is creating change in the world's climate which will have enormous consequences for people and the planet.” “Humans are contributing to the greenhouse effect by emitting greenhouse gases (GHGs) that trap energy and warm the atmosphere. Most of the emissions come from burning fossil fuels such as coal, oil and gasoline.”

62 Global Warming & Climate Change
…. OR …. The average global temperature is rising sharply due to increasing concentrations of greenhouse gases (GHGs) in the atmosphere. “Humans are contributing to the greenhouse effect by disturbing the balance of carbon dioxide between the atmosphere, soil and waters.” TS

63 Drivers of Renewable Energy
Renewable energies have considerable potential and could theoretically provide a nearly unlimited supply of relatively clean and mostly local energy. In absolute terms, renewable energy supply has been growing strongly; the annual growth for wind energy, for example, has been around 30% recently, albeit from a very low base. In relative terms, on the other hand, the share of modern renewables, including large hydro, in the total primary energy supply has remained around 4%... … excluding large hydro around 0.5%.


Lataa ppt "TIN, Keilaniemi 30.10.2003 Global energy view Tuomo Suntola."

Samankaltaiset esitykset


Iklan oleh Google