Esittely latautuu. Ole hyvä ja odota

Esittely latautuu. Ole hyvä ja odota

LÄMMÖNSIIRRON PERUSTEET BH20A0300 Syksy 2013

Samankaltaiset esitykset


Esitys aiheesta: "LÄMMÖNSIIRRON PERUSTEET BH20A0300 Syksy 2013"— Esityksen transkriptio:

1 LÄMMÖNSIIRRON PERUSTEET BH20A0300 Syksy 2013
Johdanto, lämpötaseet LÄMMÖNSIIRRON PERUSTEET BH20A0300 Syksy 2013

2 Sisällys Tekniset sovellukset Keskeiset käsitteet Lämmönsiirtotavat
Perusmuuttujat ja -yksiköt Termistö ja Dimensiottomat ryhmät Lämmönsiirtotavat Johtuminen (Conduction) Konvektio (Convection) Säteily (Radiation) Säilymisyhtälöt, energiatase Incropera: Luku 1

3 Sovellukset • Sähkölaitteiden jäähdytys • Lämmönsiirtimet
• Rakennukset: lämmitys ja ilmanvaihto • Voimalaitokset • Jääkaapit, lämpöpumput • Ihmisruumis, jne. Suunnitteluongelmien luokittelu: Suorituskyky: Lämpötehon ja lämpötilaerojen määrittely olemassa oleville järjestelmille Mitoitus: Mittasuhteiden määrittely lämmönsiirtimen pinnoille määrätyn lämmönsiirron suorituskyvyn saavuttamiseksi – lämpötilaerot ja lämpöteho

4 Lämmönsiirron käsitteet, termistö
Lämmönsiirto heat transfer on lämpöenergian siirtymistä lämpötilaeron tähden. Lämpöenergia thermal energy liittyy aineen muodostavien atomien ja molekyylien liikkeeseen, pyörimiseen, värähtelyyn ja sähköisiin tiloihin. Se edustaa mikroskooppisten tapahtumien kumulatiivista vaikutusta ja on suoraan yhteydessä aineen lämpötilaan.

5 Lämmönsiirron käsitteet, termistö
Lämpötila temperature: T [K] Keino arvioida epäsuorasti aineeseen varastoituneen lämpöenergian määrää Mikroskooppisessa mittakaavassa lämpötila voidaan määritellä keskimääräisenä energiana systeemin hiukkasten jokaisessa vapausasteessa. Asteikot: Kelvin, Celsius, Fahrenheit, termodynaaminen, jne. Lämpöenergia heat energy: Q [J] Energiamuoto, jota voidaan lämpötilaeron seurauksena siirtää systeemien välillä Lämpöteho heat rate: q [W] Siirtyneen lämmön määrä aikayksikössä Lämpövirta heat flux: q” [W/m2] Lämpöteho lämmönsiirron suuntaan kohtisuoraa yksikköpinta-alaa kohti

6 Lämmönsiirron käsitteet, termistö
Energia energy: E [J], yksikkömassalle: e [kJ/kg] Sisä-, liike-, potentiaalienergioiden summa. Sisäenergia internal energy: U [J], yksikkömassalle: u [kJ/kg] Havaittava, latentti, kemiallinen ja ydinkomponentti Havaittava: aineen muodostavien molekyylien ja atomien siirtymis-, pyörimis- tai värähtelyliikettä. Latentti: liittyy faasinmuutoksiin kaasun, nesteen ja kiinteän aineen välillä vaikuttaviin molekyylien välisiin voimiin. Kemiallinen: atomien välisiin kemiallisiin sidoksiin varastoitunut energia. Ydin: koossapitävät voimat ytimessä. Entalpia enthalpy: h [kJ/kg] Määritelmä: Virtaustyö, on nesteen työntöön ja virtauksen ylläpitoon tarvittava energia, missä p on absoluuttinen paine ja v määrätty tilavuus. Entalpiaa käytetään yleisesti nestevirtaussysteemin tarkastelussa, suure on siis määritelty käyttökelpoisuuden tähden.

7 Lämmönsiirron käsitteet, termistö
Lämpökapasiteetti heat capacity: C [J/K] Lämpökapasiteetti on energia, joka tarvitaan systeemin lämpötilan nostamiseksi yhdellä asteella Ominaislämpökapasiteetti specific heat: c [kJ/kgK] Ominaislämpökapasiteetti on energia, joka tarvitaan yksikkömassan lämpötilan nostamiseksi yhdellä asteella ja on lämpötilan ja paineen funktio: systeemille vakiotilavuudessa: cv systeemille vakiopaineessa: cp Ideaalikaasulle (matalissa lämpötiloissa kaikki kaasut muistuttavat ideaalikaasua): Sisäenergia ja entalpia Kokoonpuristumattomille aineille (kiinteät aineet, nesteet) systeemin tarkka tilavuus ei ole paineen tai lämpötilan funktio :

8 Dimensiottomat luvut Johtuminen Biot, Fourier Konvektio
Reynolds, Nusselt, Prandtl,.. Massan- ja lämmönsiirron analogia Colburnin tekijä,..

9 Lämmönsiirtotavat Johtuminen conduction: lämmönsiirto väliaineen halki
Konvektio convection: lämmönsiirto liikkuvan nesteen ja pinnan välillä Säteily radiation: pinnan tietyssä lämpötilassa säteilemien sähkömagneettisten aaltojen muodossa tapahtuva lämmönsiirto Johtuminen ja konvektio vaativat lämpötilaerojen olemassaoloa väliaineessa. Vaikka säteily on lähtöisin aineesta, sen eteneminen ei vaadi väliainetta ja tapahtuu kaikkein tehokkaimmin tyhjiössä.

10 Säilymisyhtälöt Yleisimmät säilymisyhtälöt Massan säilyminen
Ominaisuuden pitoisuuden muutos Ominaisuuden lähde Ominaisuuden virtaus ulos kontrollitilavuudesta Ominaisuuden virtaus sisään kontrolli- tilavuuteen Kontrollitilavuus Kontrollipinta-ala Muutos = Ominaisuuden nettovirtaus + Ominaisuuden lähde Yleisimmät säilymisyhtälöt Massan säilyminen Liikemäärän säilyminen Energian säilyminen

11 Termodynamiikan 1. laki Aikaperusta: Systeemin tyyppi:
“Kontrollitilavuuteen varastoidun energian määrän lisääntymisen täytyy olla yhtä suuri kuin kontrollitilavuuteen tulevan energian määrä vähennettynä kontrollitilavuudesta poistuvan energian määrällä.” Tärkeä työkalu lämmönsiirron tarkastelussa, joka usein antaa lähtökohdan lämpötilan määrittämiseen systeemissä. Aikaperusta: Systeemin tyyppi: Ajanhetkellä Aikavälillä Kontrollitilavuus Kontrollipinta-ala

12 Termodynamiikan 1. laki Pinnan ilmiöt Tilavuuden ilmiöt
Lämpö- ja/tai mekaanisen energian siirron teho kontrollipinta-alan yli lämmönsiirron, nestevirtauksen ja/tai työnvuorovaikutusten seurauksena Tilavuuden ilmiöt toisesta energiamuodosta muuntumalla syntyvän lämpöenergian tuottoteho (esim. sähkö-, ydin- tai kemiallinen); energian muunto prosessissa tapahtuu systeemin sisällä systeemin varastoidun energian määrän muutosnopeus Energian säilyminen Aikavälillä

13 Termodynamiikan 1. laki Epästationääri prosessi suljetulle systeemille, jolla massa (M), oletetaan lämmönsiirto systeemiin (sisäänvirtaus) ja systeemin tekemä työ (ulosvirtaus). 1. Aikavälillä 2. Ajanhetkellä Potentiaali- tai liike-energian merkityksettömille muutoksille Sisäinen lämpöenergia = Systeemiin varastoidun kokonaisenergian muutos Q = Systeemiin siirretty nettolämpö W = Systeemin tekemä nettotyö

14 Termodynamiikan 1. laki Stationäärille avoimelle systeemille, jossa ei lämpöenergian tuottoa = Kysytty sisäenergia = Kysytty virtaustyö = Kysytty liike-energia = Kysytty potentiaalienergia Systeemeille, joissa merkittävää lämmönsiirtoa

15 Termodynamiikan 1. laki Entalpia Jos myös systeemin tekemä
nettotyö on merkityksetön

16 Menetelmä 1. lain tarkasteluun
Esimerkki Esitetään systeemin kaavakuvassa katkoviivalla kontrollitilavuus. Valitaan oikea aikaperusta. Tunnistetaan oleelliset energian siirtymisen, tuoton ja/tai varastoinnin termit kaavakuvaan nimettyjen nuolien avulla. Kirjoitetaan vallitseva muoto energian säilymisen laista. Sijoitetaan oikeat energian siirtymisen, tuoton ja/tai varastoinnin termien lausekkeet energianyhtälön termien paikalle. Ratkaistaan tuntematon suure.

17 Pinnan energiatase Erikoistapaus: ei tilavuutta tai massaa kontrollipinta-alan sisäpuolella. Energian säilyminen (Ajanhetkellä): Pätee stationääri- ja epästationääritilassa tilassa. Massan ja tilavuuden puuttuessa energian varastointi ja tuotto eivät kuulu energiataseeseen, vaikka ne tapahtuisivatkin pinnan rajaamassa väliaineessa. Tarkastellaan johtumis-, konvektio- ja säteilylämmönsiirtoa seinämän pinnassa.

18 Stationääri johtuminen
LÄMMÖNSIIRRON PERUSTEET BH20A0300 Syksy 2012

19 Sisällys Yleiskatsaus johtumiseen Termiset aineominaisuudet
Fourierin laki Termiset aineominaisuudet Lämmönjohtavuus & riippuvuus lämpötilasta Energiatase – Lämmön diffuusioyhtälö Lämpötilaprofiilin & johtumistehon ratkaisut Johtumisen käsitteet Terminen resistanssi Lämmönläpäisykerroin Terminen piiri Sisäinen lämmönlähde Incropera: Luvut 2-3.5

20 Tavoitteet

21 Sovellukset/esimerkit
Lämpötilaprofiilit T(x,y,z,t) Lämpövirrat Lämpövarasto Lämpölaajeneminen ja muodon muutos Lämpörasitus Kuumuudenkestävän materiaalin paksuuden optimointi Pinnoitusmateriaalin valinta

22 Johtuminen – Fourierin laki Conduction – Fourier’s Law
Fourierin laki lämmönjohtumiselle lämmönsiirto korkeammasta matalampaan lämpötilaan = Lämmönjohtavuus = Lämmönsiirtoa kohtisuoraan oleva pinta-ala = Lämpötilagradientti

23 Lämmönjohtavuus Thermal Conductivity
Johtuminen Kiinteät aineet Hilan molekyylien värähtelyt ja Vapaiden elektronien siirtämä energia Kaasut ja nesteet Törmäykset ja Molekyylien diffuusio satunnaisten liikkeidensä myötä. energian siirtymistä korkeaenergisemmistä hiukkasista matalaenergisempiin hiukkasiin atomien ja molekyylien vuorovaikutusten ansiosta [W/mK] Terminen diffusiviteetti, α Materiaalin lämmönjohtavuuden suhde yksikkötilavuuteen varastoituun lämpöön.

24 Johtuminen – Fourierin laki Conduction – Fourier’s Law
Fourierin laki lämmönjohtumiselle Johtumisen lämpövirran suunta on aina vakiolämpötilassa olevan pinnan, isotermisen pinnan normaali = pienenevän lämpötilan suunta Yleinen muoto 2-ulotteinen muoto 3-ulotteinen muoto

25 Esimerkki: Lämmönjohtavuus
TUNNETAAN: Määrätyn paksuisen puulevyn lämpövirta ja pintalämpötilat. SELVITETTÄVÄ: Puun lämmönjohtavuus k. OLETUKSET: Yksiulotteinen johtuminen x-suunnassa Stationääritila Vakiot aineominaisuudet. TARKASTELU: Lämmönjohtavuus (Fourierin laki).

26 Lämmönjohtavuus Thermal Conductivity
Mittaa aineen kykyä siirtää lämpöenergiaa johtumisen avulla. Aineominaisuustaulukot: Kiinteät aineet: Taulukot A.1 – A.3 Kaasut: Taulukot A.4 Nesteet: Taulukot A.5 – A.7

27 Lämmönjohtavuus Tapaus: Tulipesän seinä (ruostumaton teräs)
Suurin piirtein – suuruusluokka q”= 16W/mK * ( )K/0.01m = 16W/mK * 10000K/m = 160 kW/m2

28 Lämmönjohtavuus Nesteet Kaasut

29 Lämmönjohtavuus Thermal Conductivity
Isotrooppiset materiaalit k on sama kaikissa suunnissa Anisotrooppiset materiaalit kuten puu ja kerroksittaiset materiaalit, k on merkittävästi suurempi syitä tai kerroksia pitkin kuin niitä kohtisuoraan. anisotrooppisilla materiaaleilla k voi riippua paljon suunnasta.

30 Lämmönjohtavuus Tärkeitä: Vaihteluvälit Jää 1.88 W/mK Kivi 2-5 W/mK
Iho 0.37 W/mK Tiili 0.72 W/mK Puu W/mK

31 Johtuminen Conduction

32 Energiataseet johtumiselle
Lämpöenergiatase suljetuille systeemeille Lämmön diffuusioyhtälö Reunaehdot ja alkuehto Ratkaisu Lämpötilaprofiilille ja johtumisen lämpöteholle

33 Yleinen 1-ulotteinen lämmön diffuusioyhtälö
Suljettu systeemi karteesisissa koordinaateissa Johtumisen lämpötehot vastakkaisilla pinnoilla x-suunta: Lämpöenergian muutos kontrollitilavuudessa Energialähdetermi Energian tuottoteho yksikkötilavuudessa

34 Yleinen lämmön diffuusioyhtälö
Termien sijoittaminen energiataseeseen 1-ulotteinen muoto suljetulle systeemille: (Lämmön diffuusioyhtälö) 3-ulotteinen yhtälö voidaan päätellä samalla tavoin, 3-ulotteisella johtumisella. 3-ulotteinen lämmön diffuusioyhtälö:

35 Menetelmä johtumisen tarkasteluun
Määritetään lämpöyhtälön sopiva muoto ja reunaehdot. Yksinkertaisin tapaus: Yksiulotteinen, stationääri johtuminen ilman lämpöenergian tuottoa. 2. Ratkaistaan lämpötilajakauma. 3. Sovelletaan Fourierin lakia lämpövirran määrittämiseen. tai yleisessä tapauksessa

36 1-ulotteinen stationäärinen johtuminen 1-D Steady-state Conduction
Lämmön diffuusioyhtälön yleinen muoto karteesisissa koordinaateissa: Stationäärissä, yksiulotteisessa tilassa kun ei lämmöntuottoa: Lämpöyhtälö Vakio k Lämpövirta on riippumaton x:stä. Lämpöteho on riippumaton x:stä. 1-ulotteinen approksimaatio pätee, kun

37 1-ulotteinen stationäärinen johtuminen 1-D Steady-state Conduction
Analyyttinen ratkaisu lämpöyhtälölle Reunaehdot 1. x = 0: T = Ts,1 2. x = L: T = Ts,2 Yleinen ratkaisu Lämpötilajakauma reunaehdoilla: Lämpötilagradientti Lämpöteho - Fourierin laki

38 Fourierin ja Ohmin lakien analogia
Fourierin lain alkuperä Havaintoihin perustuva johdettu havaituista ilmiöistä pikemminkin kuin aiemmista fysiikan laeista. Useita tärkeitä analogioita: Ohmin ja Fickin lait ovat esimerkkejä sähköisistä ja aineensiirron analogioista.

39 Terminen resistanssi (1) Thermal Resistance
Analoginen sähkövirran kanssa Johtumislämmönsiirto tasoseinämän yli Terminen resistanssi johtumiselle tasoseinämässä Terminen resistanssi konvektiolle ja säteilylle

40 Terminen resistanssi (2) Thermal Resistance
Kokonaisresistanssi Sarjassa Rinnan In series In Parallel Lämmönläpäisykerroin Overall heat transfer coefficient Vastaava terminen piiri Johtumisen lämpöteho

41 Yhdistelmäseinämä jossa mitätön kontaktiresistanssi
Lämmönläpäisykerroin (U) Newtonin jäähtymislain muoto, joka on muokattu käsittämään useita vastuksia lämmönsiirrossa.

42 Terminen piiri, esimerkki
Sarjassa – Rinnan Yhdistelmäseinämä: Käytännön approksimoinnit: Vaihtoehto a) x:n suhteen kohtisuorat pinnat ovat isotermisiä Vaihtoehto b) x:n suhteen samansuuntaiset pinnat ovat adiabaattisia

43 Kontaktilämpövastus Contact Heat Resistance
Kontaktilämpövastus yksikköpinta-alalle Huom. Eri kuin kontaktivastus Sileille keskenään kontaktissa oleville pinnoille, joilla pieni, leveyden L suuruinen karakteristinen väli Kokeellisesti määritetty ja taulukoitu erilaisille rajapinnan nesteille, kontaktissa oleville materiaaleille ja pinnan karheuksille

44 Yhdistelmäseinämä jossa kontaktiresistanssia

45 Säteittäisen johtumisen lämpöyhtälö
Lämpöyhtälö: 1-ulotteinen, stationääritila, ei lämmöntuotantoa Reunaehdot r = r1: T = Ts,1 =>Ts1 = C1lnr1+C2 r = r2: T = Ts,2 =>Ts,2 = C1lnr2+C2  Yleinen ratkaisu: Ratkaisemalla vakiot C1 ja C2 saadaan

46 Putkiseinämä Johtumisen lämpöteho Kokonaislämpövastus Johtumisteho

47 Pallomainen kuori Lämpöyhtälö pallokoordinaateissa
tai kuviosta johtaen vakio => Lämpötilajakauma vakiolle k Lämpövirta, lämpöteho ja terminen resistanssi

48 Yleisiä ratkaisuja lämpöyhtälölle

49 Yhteenveto Termiset aineominaisuudet Fourierin laki
Lämmönjohtavuus & riippuvuus lämpötilasta Fourierin laki lämmön johtumiselle Johtumisen käsitteet Terminen resistanssi Lämmönläpäisykerroin Terminen piiri Energiatase– Lämmön diffuusioyhtälö Lämpötilaprofiilin & johtumistehon ratkaisut


Lataa ppt "LÄMMÖNSIIRRON PERUSTEET BH20A0300 Syksy 2013"

Samankaltaiset esitykset


Iklan oleh Google