Esittely latautuu. Ole hyvä ja odota

Esittely latautuu. Ole hyvä ja odota

Tulenkestävät materiaalit pyrometallurgisissa prosesseissa

Samankaltaiset esitykset


Esitys aiheesta: "Tulenkestävät materiaalit pyrometallurgisissa prosesseissa"— Esityksen transkriptio:

1 Tulenkestävät materiaalit pyrometallurgisissa prosesseissa
Metallurgiset prosessit ja niiden mallinnus Torstai klo 8-10 Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

2 Luennon tavoite Luoda yleiskatsaus tekijöihin, joita on huomioitava tarkasteltaessa vuorausmateriaaleja ja niiden käyttäytymistä pyrometallurgisissa prosesseissa Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

3 Sisältö Tulenkestävät materiaalit
Tehtävät ja rooli pyrometallurgiassa Rakenne, ominaisuudet Jaottelu: koostumus, muoto, ... Valmistus Tulenkestäviin kohdistuvat rasitukset Kemialliset, termiset, mekaaniset vs. materiaalin ominaisuudet Käytännössä huomioitavia asioita Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

4 Tulenkestävien materiaalien rooli ja merkitys pyrometallurgiassa
Pyrometallurgiassa usein korkeat lämpötilat Tarvitaan materiaaleja, jotka kestävät korkeita lämpötiloja Sulaminen + Kemialliset reaktiot Esim. teräksen, sementin ja lasin valmistus tai energiantuotanto ei nykymittakaavassa olisi mahdollista ilman tulenkestäviä materiaaleja Materiaalin rikkoutuminen voi johtaa suuriin taloudellisiin ja henkilövahinkoihin Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

5 Tulenkestävien tehtävät
Estää sulia vaurioittamasta vaippaa Toimia lämpösuojana sulan ja reaktorin vaipan välillä Suojata vaippaa fyysisesti esim. panostuksen yhteydessä Hidastaa sulan jäähtymistä reaktorissa Energian säästö Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

6 Tulenkestävien materiaalien määritelmä
Tulenkestävän materiaalin fysikaalinen muoto ja kemiallinen koostumus säilyvät korkeissa lämpötiloissa. Materiaalin on kestettävä vähintään 1500 C:n lämpötila. Aine on erittäin tulenkestävä, jos se kestää vähintään 1830 C:n lämpötilan. Eristysmateriaalit ovat tulenkestäviä, jos ne kestävät 800 C:n lämpötilan. ISO1109: Pehmenemislämpötila vähintään 1500 C Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

7 Tulenkestävien materiaalien yleisiä ominaisuuksia
Koostuvat usein useista faaseista Ei sulamispistettä, vaan pehmenemisalue Lämpölaajeneminen huomioitava Vaadittavia asioita Kestettävä termisiä, kemiallisia ja mekaanisia rasituksia Metallurginen stabiilisuus Ei saa häiritä prosessia Työturvallisuus: käyttö ja asennus Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

8 Tulenkestävät metallurgisessa reaktorissa
Kulutusvuoraus Taustavuoraus Eristevuoraus Esimerkkinä väliallas teräksen jatkuvavalussa Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

9 Tulenkestävien materiaalien rakenteesta
Runko- eli perusaine Sideaineet Lisäaineet Huokoset Massojen asennuksessa käytetään yleensä vettä Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

10 Tulenkestävien materiaalien rakenteesta
Runko- eli perusaine Materiaalin tulenkestävä osa Mekaanisesti luja; tilavuuspysyvä Tärkeimmät ominaisuudet: kemiallinen ja mineraloginen koostumus sekä raekokojakauma Rakeiden väliin jäävä hienoaines = Matriisi Raekokojakaumalla voidaan vaikuttaa erityisesti massojen ominaisuuksiin Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

11 Kemiallinen ja mineraloginen koostumus?
Kemiallinen koostumus kertoo, missä suhteessa alkuaineet esiintyvät jossain faasissa, yhdisteessä tai materiaalissa Voidaan esittää kemiallisten yhdisteiden (esim. SiO2, Al2O3, CaO) määrinä alkuaineiden sijasta Mineraloginen koostumus kertoo, missä suhteessa mineraaleja esiintyy jossain materiaalissa Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

12 Kemiallinen ja mineraloginen koostumus?
Yhdisteen kemiallinen nimi ottaa kantaa vain kemialliseen koostumukseen Esim. ’pii(di)oksidi’ = SiO2 ottamatta kantaa aineen olomuotoon/kiderakenteeseen Mineraalinimi kiinnittää kemiallisen koostumuksen lisäksi myös kiderakenteen Esim. ’kvartsi’ = trigonisen (tai heksagonisen) kiderakenteen omaava kiinteä SiO2 ( tai ) On aina väärin puhua sulista mineraaleista, koska jos aine on sulanut, sillä ei enää ole tiettyä kiinteän mineraalin kiderakennetta! Jos kvartsia sulatetaan, saadaan sulaa piioksidia Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

13 Tulenkestävien materiaalien mineraaleja
Yksittäisille mineraaleille voidaan esittää sulamispisteitä, vaikka useista faaseista (mineraaleista) koostuville tulenkestäville ei voidakaan! Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen,

14 Tulenkestävien materiaalien rakenteesta
Sideaineet Muodostaa sidefaasin, joka sitoo runkoaineen rakeet toisiinsa Usein tulenkestävien materiaalien heikoin osa Esim. fosforihappo, fosfaatit, vesilasi, MgCl2, epäorgaaniset polymeerit, savi, kalsiumaluminaattisementit, terva, piki, hartsit, silikaatit, kromaatit ja boraatit Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

15 Tulenkestävien materiaalien sidostyypit
Keraaminen sidos Suorasidos: Uuden kiinteän faasin muodostuminen kiinteäntilan diffuusion kautta (yleensä yli 800 C) Sulasidos/lasisidos: Matriisiin muodostuu pieni määrä sulafaasia, joka jäähtyessään jähmettyy lasiksi (luja, mutta hauras sidos) Kasvusidos: Yksifaasisysteemissä esiintyvä sidos, kun rakeiden koko kasvaa lämpötilan noustessa diffuusion ansiosta Tuoresidos (10-30 C) Kaikkiin vettä hyödyntäviin tuoresidoksiin liittyy hydratoituminen (’hydraulinen sidos’) Sidoksen nimeäminen käytetyn sidosaineen mukan: sementtisidos, hydroksidisidos, jne. Lämpösidos ( C) Esim. fosfaatit ja orgaaniset sideaineet (hartsi) Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

16 Tulenkestävien materiaalien rakenteesta
Lisäaineet Asennettavuuden parantaminen ja ominaisuuksien hienosäätö; erilaisia tehtäviä Paisunta-aineet kompensoivat kutistumista Aktivaattorit nopeuttavat/katalysoivat kovettumista Inhibiitit hidastavat kovettumista ja/tai kaasujen muodostumista Deflokkulantit parantavat massojen juoksevuutta Kuonankeston parantaminen Metallit suojaavat materiaalin hiiltä hapettumiselta Usein vaikea saada tietoa (tuotesalaisuus) Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

17 Tulenkestävien materiaalien rakenteesta
Huokoset Vaikuttavat lämmönjohtavuuteen sekä siihen miten sula pääsee tunkeutumaan vuorauksen sisään Voivat olla suljettuja tai avoimia, joista jälkimmäiset voivat olla läpivirtauksellisia tai läpivirtauksettomia Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

18 Tulenkestävien materiaalien rakenteesta
Materiaalin ominaisuudet riippuvat rakenteesta Rakeiden väliset kontakit - Lujuus Mikrorakenne - Terminen kestävyys lämpötilojen muuttuessa (kyky absorboida säröilyä) Ominaispinta-ala ja permeabiliteetti - Reaktiivisuus atmosfäärin kanssa Huokoisuus - Sulien tunkeutuminen Komponenttien jakautuminen rakenteessa - Kulumisreaktioiden eteneminen Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

19 Tulenkestävien materiaalien luokittelu
Massat ja tiilet (muotoillut tuotteet) Käyttökohteen mukaan Ominaisuuksien (esim. lujuus) mukaan (Runkoaineen) Kemiallisen tai mineralogisen koostumuksen mukaan Oksidiset ja ei-oksidiset tuotteet Käytettyjen sidos- tai lisäaineiden mukaan Huokoisuuden mukaan Tiheät tuotteet (huokoisuus < 45 til-%) Eristystuotteet (huokoisuus > 45 til-%) Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

20 Tiilet Perinteisesti käytetyin, joskin massojen käyttö yleistynyt viime aikoina Valmis muoto: suora tiili, puoli- ja kokoholvitiili, säteistiilet Jaottelu valmistustavan mukaan poltettuihin, polttamattomiin ja sulavalettuihin tiiliin Tiilten asennus muuraamalla Holvit, seinät, pohjat, arinat Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

21 Tiilet Prosessi- ja ympäristötekniikan osasto
Eetu-Pekka Heikkinen, 2013

22 Massat Saavat lopullisen muotonsa asennuksen yhteydessä
Matala- ja ultramatalasementtiset (LC, ULC) ja sementittömät (CF) massat Asennustavan mukaan jaetaan valu-, ruisku(tus)-, slammaus-, sively- ja kuivamassoihin Kuivaus ja poltto käyttöpaikalla; asennus vaativampaa kuin tiilien muuraus Tiiviit massat: haaste veden poistolle Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

23 Massat Massojen käyttö on kasvanut, koska:
valmistus vaatii pienet investoinnit massat ovat joustavia varastoinnin ja käytön suhteen massoja on helppo(?) asentaa massat ovat hinnaltaan kilpailukykyisiä kestoikä vastaa tiilten kestoikää massattuja rakenteita on helppo korjata (kuumanakin) massauksella saadaan saumaton vuoraus Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

24 Tiilet ja massat Erilaiset materiaalit eri osissa reaktoria
Esim. tiilillä vuoratun konvertterin paikkaus massoja käyttäen Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

25 Eristysmateriaalit Uunin tai reaktorin termisen hyötysuhteen parantaminen hyvän eristyskyvyn omaavia vuorausmateriaaleja käyttämällä Käyttö taustavuorauksena tai kulutuspinnalla Keskeiset vaatimukset eristysmateriaaleille: Mahdollisimman pieni lämmönjohtavuus Mahdollisimman pieni lämpökapasiteetti (lämmön sitoutuminen vuoraukseen vähäistä) Huokosia vähintään 45 %, usein % Hyvä eristys, mutta heikko lujuus, kulumisherkkyys, suuri kaasunläpäisevyys Keraamisten kuitujen terveyshaitat Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

26 Erityiskappaleet Valmiita muotoon tehtyjä kappaleita, joiden rakenne on spesifisempi kuin tiilillä Yleisiä esim. senkkametallurgiassa ja jatkuvavalussa Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

27 Tulenkestävien materiaalien luokittelu pääkomponentin kemiallisen koostumuksen mukaan
Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

28 Tulenkestävien materiaalien luokittelu pääkomponentin kemiallisen koostumuksen mukaan
Luokittelu ISO 1109:n mukaan Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

29 Happamat ja emäksiset vuorausmateriaalit
Jos kuonan ja vuorauksen emäksisyyksissä on suuri ero, on riski nopean kulumiseen Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

30 Silikatuotteet Käyttö esim. koksauspattereissa ja jatkuvavalun jatketiilissä Etuja hyvät lämpölaajenemis- ja tulenkestävyysominaisuudet Jo pienet määrät epäpuhtauksia laskevat merkittävästi sulamislämpötilaa Pyrkimys puhtaisiin raaka-aineisiin Heikkouksia Alkaleja sisältävät kaasut korrodoivat silikaa Korkeissa lämpötiloissa pelkistävät kaasut pelkistävät silikaa kaasuksi (SiO) Suuret tilavuudenmuutokset faasimuutosten yhteydessä (mineraloginen koostumus tärkeä) Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

31 SiO2:n faasimuutokset Prosessi- ja ympäristötekniikan osasto
Eetu-Pekka Heikkinen, 2013

32 Samotti-tuotteet 10-45 % Al2O3 + ’loput’ SiO2
Koko Al2O3-SiO2-systeemin koostumusalue on tulenkestävä Käyttö perustuu mulliitin (3A2S) muodostumiseen (erittäin tulenkestävä; vähäinen lämpölaajeneminen) Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

33 Samotti-tuotteet Käyttö esim. masuuneissa ja lämpökäsittely- ym. uuneissa sekä taustavuorauksena Käyttö vähentynyt, kun siirrytty korkea-aloksisiin ja emäksisiin vuorauksiin (laatuvaatimukset) Epäpuhtaudet laskevat sulamislämpötilaa Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

34 Aloksi-tuotteet Al2O3-SiO2-systeemi; korkea Al2O3-pitoisuus
Käyttö esim. senkkojen ja välialtaan taustavuorauksena sekä masuuneissa ja rikinpoistoaseman lanssissa Korkea-aloksituotteita terässenkoissa ja valokaariuuneissa Tiukentuneet vaatimukset ovat johtaneet siihen, että raaka-aineet ovat nykyisin synteettisiä Korkea tulenkestävyys ja kuumalujuus, hyvä kuonankesto Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

35 Emäksiset materiaalit
Erittäin hyvä tulenkestävyys Kestäviä emäksisiä kuonia vastaan Korkea termodynaaminen stabiilisuus Sisältävät usein MgO:a ja Cr2O3:a eri suhteissa Nimeäminen MgO:n määrän mukaan Magnesia, magnesiakromi, kromimagnesia Lisäksi CaO, Al2O3, SiO2, Fe2O3 Doloma, kromiitti, forsteriitti Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

36 Emäksiset materiaalit
Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

37 Emäksiset materiaalit
Käyttö lisääntynyt terästeollisuudessa Magnesia: VKU, terässenkat, BOF, AOD, ... Magnesiakromi: sementtiuunit Kromimagnesia: VKU kuonarajan yläpuolella Doloma: VKU, terässenkat, BOF, AOD Kromiitti: käyttö vähentynyt kromimagnesia vuorausten käytön lisääntyessä Forsteriitti: kestää rautapitoisia kuonia vastaan 1400 C:een asti Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

38 ZrO2-pohjaiset materiaalit
ZrSiO4 = zirkoni = zirkoniumsilikaatti ZrO2 = zirkonia = zirkoniumoksidi (Zr = zirkonium) Hyvä tulenkestävyys, korkea termodynaaminen stabiilisuus Puhtaana lukuisia kidemuotoja Käyttö edellyttää seostamista CaO-, MgO- tai Y2O3-stabilointi pitää korkean lämpötilan faasit metastabiileina matalammissakin lämpötiloissa Käyttö jatkuvavalun erikoiskappaleina Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

39 MgO-Al2O3-pohjaiset materiaalit
Spinellimateriaalit ja spinelliä muodostavat materiaalit Käyttö terässulaton kohteissa (esim. senkka) Tulenkestävä, termodynaamisesti stabiili, kuonankestävä ja kallis btw: ’spinelli’ voi tarkoittaa MgAl2O4-mineraalia R2+R23+O4-ryhmän mineraaleja (spinelli, kromiitti, magnetiitti) synteettisiä spinellityyppisiä kiteitä kuten ferriittiä ja jalokivijäljitelmiä Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

40 Grafiitti Suuri lämmönjohtavuus Kestää hyvin lämpötilanvaihteluja
Hyvä kuonankestävyys Huono kostutus oksidisulien kanssa Liukenee useimpiin metalleihin Käyttö sellaisenaan tai yhdessä oksidisten materiaalien kanssa Ei sula, joten tarvitaan erillinen sidosaine Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

41 Karbidit Lähinnä piikarbidi, SiC
Ei sula (sublimoituu 2700 C:ssa), joten tarvitaan erillisiä sidosaineita Oksidisidottu, nitridisidottu, piikarbidisidottu (piin ja hiilen poltto), SiAlON-sidos Hyvä lämmönjohtokyky ja kulutuksenkesto Liukenee metallisuliin, herkkä hapettumiselle Käyttö masuuneissa, kuumennusuuneissa, lämmönvaihtimissa. Muita karbideja: B4C ja TiC Käyttö kuluttavissa kohteissa (kovia) Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

42 Nitridit ja oksinitridit
Hyvä tulenkestävyys, lujuus ja lämpöshokin kesto Käyttö yhdessä muiden aineiden kanssa Si3N4; eniten käytetty AlN; käyttöä rajoittaa hapettumisherkkyys Mek. ominaisuuksiltaan vastaava ja kemiallisesti kestävämpi on AlON (mutta kallis) BN; valuputken kuonarajalla Sialonit (Si3N4-AlN-Al2O3-kiinteitä liuoksia): esim. piikarbidin sidefaasina Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

43 Tulenkestävien materiaalien valmistus
Raaka-aineet luonnonmateriaaleja tai synteettisiä raaka-aineita Rajoitukset epäpuhtauksien suhteen ovat johtaneet synteettisten raaka-aineiden käytön yleistymiseen Valmistusmenetelmät: Sahaamalla suuremmista kappaleista Sulatus ja valu (sulavaletut) Hienokeraaminen menetelmä: hienojauhatus, lietevalu, suulakepuristus, isostaattinen puristus Karkeakeraaminen menetelmä: murkaus, luokitus, muotoilu, kuivaus, poltto Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

44 Vuorauksiin kohdistuvat rasitukset
Termiset Kemialliset Mekaaniset Erilaiset rasitukset voivat kohdistua vuoraukseen yhtä aikaa Rasitukset vaihtelevat ajallisesti ja paikallisesti Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

45 Vuorauksiin kohdistuvat rasitukset
Esimerkkinä terässenkka Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

46 Termiset rasitukset Korkea lämpötila Jälkilaajenema ja -kutistuma
Lämpötilan vaihtelut Sulan metallin tunkeutuminen vuorausmateriaaliin Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

47 Termisiin rasituksiin liittyvät ominaisuudet
Tulenkestävyys (myös kuormitettuna) Painepehmeneminen ja -juoksevuus Kuumataivutuslujuus Lämpölaajeneminen Pysyvä mittamuutos (jälkilaajenema) Lämpötilan vaihteluiden kesto Lämmönjohtavuus Lämpökapasiteetti Tilavuuspaino Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

48 Kemialliset rasitukset
Vuorausmateriaalin ja sulan kuonan väliset reaktiot Vuorauksen liukeneminen kuonaan Kuonan tunkeutuminen vuorauksen huokosiin Uuden faasin syntyminen rajapinnalle Vuorausmateriaalin ja sulan metallin väliset reaktiot Analogiset vuoraus-kuona-reaktioiden kanssa Vuorausmateriaalin ja atmosfäärin väliset reaktiot Hapettuminen, pelkistyminen, sulfatoituminen, hydratoituminen, alkalien aiheuttamat reaktiot, ... Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

49 Kemiallisiin rasituksiin liittyvät ominaisuudet
Kemiallinen ja mineraloginen koostumus Huokoisuus ja kaasunläpäisevyys Termodynaaminen stabiilisuus ja kemiallinen kestävyys kuonia, metallisulia ja kaasuja vastaan Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

50 Mekaaniset rasitukset
Staattinen kuormitus Vuorauksen oma paino Dynaaminen kuormitus Reaktorin ja sen osien liikkeet Väliaineen kuluttava vaikutus Hiukkaset ja pisarat kaasun mukana Panostus Jännityksiä voi syntyä myös vääränlaisen asennuksen vuoksi Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

51 Mekaanisiin rasituksiin liittyvät ominaisuudet
Puristuslujuus Hankauslujuus Taivutuslujuus Huokoisuus Tiheys Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

52 Tulenkestävien materiaalien käytössä huomioitavia asioita
Rakenne Asennus Käyttö Turvallisuus Kunnossapito Energia ja talous Kierrätys Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

53 Tulenkestävistä materiaaleista aiheutuvat kustannukset
Materiaali(nhankinta)kustannukset Asennuskustannukset Kuivaus- ja ylöslämmityskustannukset Korjaus- ja purkukustannukset Varastointikustannukset + Vuorauksen vaikutus tuotteen laatuun prosessin luotettavuuteen työntekijöiden terveyteen Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

54 Yhteenveto Tulenkestäviä materiaaleja tarkasteltaessa huomioitavia asioita Rakenne Materiaalin rakenne Reaktorin tai vast. rakenne Kemiallinen ja mineraloginen koostumus Ominaisuudet Käyttökohde ja sen asettamat vaatimukset Käytännön rajoitukset yms. Kustannukset Turvallisuus Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013

55 Kiitokset JK2387/01 -projekti tulenkestäviä materiaaleja käsittelevän oppimateriaalin laatimiseksi Oulun yliopiston prosessimetallurgian lab. (Oulu), MEFOS (Luleå), Bergsskolan (Filipstad) Rautaruukki (Raahe), SSAB (Luleå) Jouko Härkki, Christina Viklund-White, Tommi Niemi, Hannu Makkonen, Voicu Brabie, Tommy Johansson, Jaakko Kärjä, Sune Mukka Prosessi- ja ympäristötekniikan osasto Eetu-Pekka Heikkinen, 2013


Lataa ppt "Tulenkestävät materiaalit pyrometallurgisissa prosesseissa"

Samankaltaiset esitykset


Iklan oleh Google