Esittely latautuu. Ole hyvä ja odota

Esittely latautuu. Ole hyvä ja odota

Korvan toiminta Ennen kuin pakkaamisesta voidaan puhua, tulee ymmärtää jonkin verran korvan toiminnasta….. Korvakäytävään kulkeutuvat ääniaallot saavat.

Samankaltaiset esitykset


Esitys aiheesta: "Korvan toiminta Ennen kuin pakkaamisesta voidaan puhua, tulee ymmärtää jonkin verran korvan toiminnasta….. Korvakäytävään kulkeutuvat ääniaallot saavat."— Esityksen transkriptio:

1 Korvan toiminta Ennen kuin pakkaamisesta voidaan puhua, tulee ymmärtää jonkin verran korvan toiminnasta….. Korvakäytävään kulkeutuvat ääniaallot saavat tärykalvon värähtelemään. Kuuloluut välittävät värähtelyn soikeaan ikkunaan, joka on sisäkorvan suulla oleva kalvon peittämä aukko. Kun kalvo värähtelee, simpukan sisällä olevaan nesteeseen syntyy aaltoja, jotka ärsyttävät simpukan (cochlea) sisällä olevia kuuloaistinsoluja. Korvan toiminta tMyn

2 Ihmisen korvan dynaaminen alue on ällistyttävä.
Seuraavaksi tapahtuu aaltoliikkeen muuntaminen sähköisiksi ärsykkeiksi, ja enkoodausvaihe onkin lopussa… Ihmisen korvan dynaaminen alue on ällistyttävä. Äänen yhteydessä puhutaan äänen paineen tasoista, SPL (Sound Pressure Level). Ihmisen kuulokynnyksenä pidetään arvoa (1 kHz) SPL=0, Äänenpainetaso ilmaistaan desibeleinä: Korvan toiminta tMyn

3 Kaavassa referenssiarvona on juuri tuo kuulokynnysarvo.
Noin äänenpainetasoilla dB alkaa syntymään kuulovaurioita. Laskutoimituksen tuloksena huomataan, että jos esim. äänenpaine olisi 130 dB, olisi se yli kolme miljoonaa kertaa isompi paine kuin mitä oli tuo kuulokynnyspaine!!! Korvan taajuusvaste ei ole lineaarinen, ja se riippuu äänekkyystasosta (loudness). Kuvassa 1 on hahmoteltu korvan taajuusvastetta erilaisilla äänekkyystasoilla, ISO R226, Robinson & Dadson. Korvan toiminta tMyn

4 Kuva 1. Ihmisen kuulo on voimakkaasti riippuvainen äänekkyystasosta.
Korvan toiminta tMyn

5 Kuva 1. Ihmisen kuulo on voimakkaasti riippuvainen äänekkyystasosta.
Korvan toiminta tMyn

6 Korva voidaan jakaa kolmeen anatomiseen osaan.
Ulkokorva on karvojen ja vahaa erittävien rauhasten verhoama. Se toimii suojaavana ja ääntä välittävänä rakenteena. Välikorvan tehtävä on johtaa tärykalvon värähtely mekaanisesti sisäkorvaan, joka puolestaan muuttaa sen hermoärsykkeiksi. Yleiskuva korvasta kuvassa 2. Korvan toiminta tMyn

7 Kuva 2. Yleisnäkymä korvasta.
Korvan toiminta tMyn

8 Kuva 2. Yleisnäkymä korvasta.
Korvan toiminta tMyn

9 Kuva 2. Yleisnäkymä korvasta.
Korvan toiminta tMyn

10 Kuva 2. Yleisnäkymä korvasta.
Korvan toiminta tMyn

11 Ulkokorva edustaa matalaimpedanssista osaa, välikorva impedanssisovitinta ja sisäkorva korkeaimpedanssista osaa. Jos impedanssisovitinta (lähinnä siis kuuloluut) ei olisi, heijastuisi suuri osa akustisesta energiasta ulos, jolloin siis kuulokynnys olisi merkittävästi korkeammalla. On arvioitu, että noin 99,9% ääniaallon energiasta heijastuisi pois ilman impedanssisovitusta… Korvan toiminta tMyn

12 Kuuloluista tarkempi esitys kuvassa 3.
Ulkokorva koostuu korvalehdestä (pinna), korvakäytävästä (external auditory meatus, ear canal) ja tärykalvosta (tympanic membrane, eardrum). Välikorva koostuu tärykalvosta (OK, se oli myös ulkokorvan osa….) ja kuuloluista (ossicles): vasara (hammer, malleus), alasin (incus) ja jalustin (stapes). Kuuloluista tarkempi esitys kuvassa 3. Korvan toiminta tMyn

13 Tämä kiinnittyy soikeaan
ikkunaan (oval window) Kuva 3. Vasara, alasin ja jalustin ovat pallonivelien välityksellä ketjussa. Korvan toiminta tMyn

14 Sisimmäisin kuuloluu, jalustin on elimistön pienin luu.
Välikorva on ilman täyttämä ontelo ohimoluun sisällä tärykalvon ja sisäkorvan välissä. Kolme pikkuruista kuuloluuta (vasara,…) välittävät tärykalvon värinän sisäkorvaan. Sisimmäisin kuuloluu, jalustin on elimistön pienin luu. Jalustin on kiinnittynyt alasimeen pallonivelen avulla. Kaikkia kuuloluita pitävät paikoillaan nivelsiteet. Korvan toiminta tMyn

15 Tarkempi esitys simpukasta kuvissa 4.
Sisäkorva koostuu simpukasta (cochlea), monimutkaisista luun ympäröimistä kalvokäytävistä tai kaarikäytävistä eli kaaritiehyistä (semicircular canals), soikeasta rakkulasta (utricle) ja pyöreästä rakkulasta (saccule). Ainoastaan ensimmäisenä mainittu simpukka liittyy kuuloon, muut tasapainoaistiin. Tarkempi esitys simpukasta kuvissa 4. Korvan toiminta tMyn

16 cochlea spiral ligament scala vestibuli scala media cochlear nerve scala tympani basilar membrane organ of Corti Kuva 4. Simpukan kuuloaistiin liittyvät kolme käytävää: scala vestibuli, scala media ja scala tympani. Korvan toiminta tMyn

17 Sisäkorva rakentuu monimutkaisista luun ympäröimistä kalvokäytävistä.
Kuuloelin sijaitsee etanan kotilokuorta muistuttavassa simpukassa (cochlea). Simpukka jakautuu kolmeen nesteen täyttämään käytävään, jotka kulkevat samansuuntaisina kiertyen luisen kuoren sisällä. Korvan toiminta tMyn

18 Keskimmäinen käytävistä, simpukkatiehyt, simpukan käytävä (scala media), sisältää spiraalin muotoisen kierteiselimen (organ of corti), joka on varsinainen kuuloelin. Uloimpana ovat eteiskäytävä eli eteisontelon käytävä (scala vestibuli) ja kuulokäytävä eli täryontelon käytävä (scala tympani, auditory meatus). Kierteiselin sijaitsee tyvilevyllä ja muodostuu tukisoluista sekä tuhansista kuuloaistinsoluista. Kierteiselimen kuuloaistinsolun ulottuvat peitinkalvoon (tectorial membrane) asti. Kun tyvikalvo (basilar membrane) värähtelee, nämä karvasolut (hair cell) puristuvat peitinkalvoa vasten, jolloin niissä syntyy hermoärsyke. Korvan toiminta tMyn

19 Tarkempi kuva kierteiselimestä kuvassa 5a ja 5b.
Selvyyden vuoksi: Eteiskäytävän (scala vestibuli) ja keskikäytävän (scala media, cochlear duct) välissä on eteiskalvo (Reissner’s membrane). Keskikäytävän ja kuulokäytävän (scala tympani) välissä on tyvikalvo (basilar membrane). Tarkempi kuva kierteiselimestä kuvassa 5a ja 5b. Korvan toiminta tMyn

20 Kuva 5a. Kaaviokuva kierteiselimestä, organ of Corti, joka sijaitsee scala mediassa.
Korvan toiminta tMyn

21 Kuva 5b. Kaaviokuva kierteiselimestä, organ of Corti, joka sijaitsee scala mediassa.
scala vestibuli scala tympani scala media outer hair cells Deiter’s cells inner hair cell basilar membrane Reissner’s stria vascularis tectorial membrane Korvan toiminta tMyn

22 Jatketaan vielä sisäkorvan simpukan tutkimista.
Kotilokuorta muistuttava simpukka muodostaa hieman alle kolme ”kierrosta” ja se on 35 mm ”kannasta” (base) ”kärkeen” (apex). Välikorvan luiden edestakainen liike aiheuttaa paineaaltoja simpukan sisällä olevassa nesteessä. Scala tympanissa olevan nesteen nimi on perilymph, joten tämän nesteen alkaessa värähtelemään alkaa myös tyvikalvo värähtelemään, eli jalustimen kautta siirtynyt akustinen energia saavuttaa tyvikalvon. Korvan toiminta tMyn

23 Simpukassa nämä paineaallot muunnetaan (transduction) sähköisiksi ja kemiallisiksi signaaleiksi aivoihin siirtämistä varten. Niin kuin muistetaan, keskikäytävä (scala media) sijaitsee tyvikalvon ja eteiskalvon (Reissner’s membrane) välissä. Korvan toiminta tMyn

24 Niinpä keskikäytävän ionisen nesteen (endolymph) rakenne on ratkaiseva tässä informaation muuntoprosessissa. Endolymph-tyyppistä nestettä ei ole löydetty mistään muualta kehoa, ja sen tuottamisesta vastaa stria vascularis (näkyy kuvassa 5) . Jos tyvikalvo (basilar membrane) voitaisiin irrottaa simpukasta ja ”rullata auki”, niin sen rakenne voisi olla kuvan 6 tyyppinen: Korvan toiminta tMyn

25 soikioikkuna, oval window where the stapes footplate attaches
pienet taajuudet suuret taajuudet Apical end Basal end Kärjen puoleisessa päässä leveä ja notkea, ohut. Kannan puoleisessa päässä ohut ja jäykkä. Kuva 6. Aukirullattu tyvikalvo, basilar membrane. Korvan toiminta tMyn

26 Jäykkyys määrittelee värähtelevän objektin resonanssitaajuuden.
Koska tyvikalvon jäykkyys muuttuu siirryttäessä kannasta kärkeen, aiheuttavat eri taajuudet eri kohtien resonoinnin tyvikalvolla. Siis kärjen puoleisessa päässä resonoivat pienet taajuudet (20 Hz…), keskivälissä keskisuuret taajuudet (1500 Hz…) ja kannan puoleisessa päässä suuret taajuudet (8000 Hz – Hz); edellä mainitut taajuudet siis toki ”kuta kuinkin”... Korvan toiminta tMyn

27 Itse asiassa edellä mainittua resonanssiteorian mukaista aaltoliikemallia ei ole kokeellisesti voitu todeta. Sisäkorvan nestetilaan välittyvä ääni saa aikaan etenevän aaltoliikkeen (travelling wave). Pienten taajuuksien aiheuttaessa suurimman värähtelyamplitudin simpukan kärjessä lähes koko tyvikalvo voi olla mukana värähtelyssä. Suurilla taajuuksilla verhokäyrä rajoittuu lyhyelle osalle tyvikalvoa simpukan tyveen. Korvan toiminta tMyn

28 Etenevän aaltoliikkeen verhokäyrä osoittaa värähtelyjen summaa riittävän pitkäkestoisen jatkuvan muuttumattoman äänen aikana. Hetki hetkeltä yksittäinen lyhyt ääniärsyke aiheuttaa eri kohdissa tyvikalvoa olevia värähtelykuvioita, joissa myös värähtelyn vaihe-ero ja viive aaltoliikkeen siirtyessä tyvestä kärkeen kasvaa (pätee yleisestikin: viive kasvaa siirryttäessä kohti kärkeä). Etenevän aaltoliikkeen malli merkitsee sisäkorvan taajuusanalyysiä suurimman ärsytyspaikan mukaisesti. Korvan toiminta tMyn

29 Poikkeaman verhokäyrä voisi näyttää kuvan 7 kaltaiselta:
Edellä kerrotusta on kehitetty paikkateoria (place coding): tyvikalvon eri paikat ovat virittyneet eri taajuuksille, mutta ei niin rajatulle alueelle mitä resonanssiteoria edellyttäisi. Yksittäinen sinimuotoinen äänisignaali aiheuttaa tyvikalvon poikkeamisen useammassa kuin yhdessä kohdassa. Poikkeaman verhokäyrä voisi näyttää kuvan 7 kaltaiselta: Korvan toiminta tMyn

30 Kuten yllä olevasta kuvasta huomataan, aaltoliikkeen
Apical end Basal end Jyrkkä kärjen puolella Loivempi kannan puolella Kuva 7. Tyvikalvolla etenevän aaltoliikkeen verhokäyrä. Kuten yllä olevasta kuvasta huomataan, aaltoliikkeen verhokäyrän amplitudi pienenee jyrkästi simpukan kärkisuuntaan (apex), mutta loivemmin tyveen päin (base). Korvan toiminta tMyn

31 Äänenpaineen muutos johtaa amplitudin muutokseen.
Etenevän aaltoliikkeen verhokäyrän muodon perusteella tämä johtaa myös värähtelyn leviämiseen laajemmalle osalle simpukan väliseinämää. Pienitaajuisilla hyvin voimakkailla äänillä lähes koko simpukan väliseinämä osallistuu samanaikaisesti värähtelyyn, tosin eri osat eri vaiheissa. Peitinkalvon (tectorial membrane) koskettaessa aistinsolujen säiemäisiä lisäkkeitä (stereocilia) katsotaan Cortin elimen ja peitinkalvojen eri värähtelyakselien johtavan säikeiden taipumiseen. Korvan toiminta tMyn

32 Tämä taipuminen muuttaa aistinsolujen ominaisuuksia niin, että ne ärsyyntyvät sähköisesti.
Sisäkorvan mekaanisessa toiminnassa äänen taajuus ja äänenpaine saavat aikaan erilaisia ilmiöitä, joissa äänienergia jakautuu simpukan eri osiin. Osittain tämä paikallinen koodaus on päällekkäistä, esim. ärsytyksen leviäminen simpukan tyveen päin voi johtua sekä taajuuden kasvusta että äänenpaineen noususta. Korvan toiminta tMyn

33 Kierteiselimessä (organ of corti) on kahdenlaisia aistinsoluja, joita kutsutaan karvasoluiksi (hair cell). Ulompia aistinsoluja (outer hair cell) on kolme riviä (noin 12000) simpukan pitkittäissuunnassa, sisempiä (inner hair cell) vain yksi rivi (noin 3500). On osoitettu, että ulommat aistinsolut supistuvat äänen johdosta ja ryhtyvät värähtelemään (outer hair cells, mostly modifiers). Tällöin ne jännittävät peitinkalvoa siten, että sisemmät aistinsolut ärsyyntyvät herkemmin (inner hair cells, mostly transducers). Korvan toiminta tMyn

34 Erään lähteen mukaan sisempään aistinsoluun (IHC) kiinnittyisi kuhunkin jopa hermosäiettä (radial fibers, type 1 comprise almost 95% of all afferent fibers, many-to-one connection). Saman lähteen mukaan 5 ulompaa aistinsolua (OHC) jakaisi ainoastaan yhden hermosäikeen (outer spiral fibers, type 2 comprise only 5% of all afferent fibers, one-to-many connections). Joka tapauksessa vaikuttaisi siltä, että IHC olisi ”valtatien varrella”, ja OHC edelliseen verrattuna ”kinttupolun varrella”. Korvan toiminta tMyn

35 IHC:n päällä (kohti peitinkalvoa) on kymmeniä (max 50
IHC:n päällä (kohti peitinkalvoa) on kymmeniä (max 50?) säiemäisiä lisäkkeitä (stereocilia), jotka liikkuvat vapaasti endolymph-nesteessä. OHC:n päällä (kohti peitinkalvoa) on jopa 150 kappaletta näitä säiemäisiä lisäkkeitä. OHC:n tapauksessa nuo lisäkkeet ovat kiinnittyneinä (embedded) peitinkalvoon. Korvan toiminta tMyn

36 Aistinsolujen sähköinen ärsyyntyminen välittyy kuulohermon säikeisiin.
Syntyessään pienellä ihmisellä on noin karvasolua (luku voi olla huomattavasti isompikin riippuen lähteestä!). Osa näistä osallistuu tasapainon aistimiseen. Aistinsolujen sähköinen ärsyyntyminen välittyy kuulohermon säikeisiin. Jos yksittäisestä hermosäikeestä mitataan taajuusvastetta, niin voidaan todeta hermosäikeen olevan herkin määrätylle taajuudelle (vrt. paikkateoria!), mutta pystyvän reagoimaan kuitenkin myös useammille taajuuksille äänitason kasvaessa. Korvan toiminta tMyn

37 Tätä kutsutaan taajuusteoriaksi.
Toisaalta tutkimuksissa on voitu myös todeta, että kukin hermosäie saattaa vastata kullekin ääniaallon heilahdukselle, jolloin äänen taajuus välittyisi suoraan hermosäikeiden jännitevaihtelujen taajuuteen. Tätä kutsutaan taajuusteoriaksi. Käytännössä yksittäinen hermosäie ei kuitenkaan pysty seuraamaan ääniaallon taajuutta kovinkaan suuriin taajuuksiin (max Hz?). Kuulohermossa lienee noin hermosäiettä. Tiedon välittämiseen osallistuu koko ajan suuri joukko säikeitä samanaikaisesti. Korvan toiminta tMyn

38 Säikeiden yhteinen vaste on tahdissa äänen taajuuden kanssa suuremmillakin taajuuksilla (max. 1,6 - 5 kHz?), ja tätä kutsutaan volley-periaatteeksi. Kuulohermossa kuvastuu myös kolmas periaate, jolla tieto äänen taajuudesta välittyy keskushermostoon. Sisäkorvan aaltoliikemallin mukaan suuritaajuisen äänen ärsytyksen paikantuessa simpukan tyveen, sieltä lähtevä hermovaste tulee hetkeä aikaisemmin kuin vaste, joka lähtee simpukan kärjestä. Etenevän aallon kulku simpukan kärkeen kestää määrätyn ajan, jolloin syntyy vaihe-ero. Korvan toiminta tMyn

39 Eritaajuisten äänien hermovasteilla on siis erilainen viive.
Sisäkorvan taajuustulkinta perustuu siis osin paikkateoriaan, osin taajuusteoriaan ja lisäksi eri kohdista lähtien hermovasteiden vaihe- ja viive-eroihin. Yhteenvetona on kohtuullista todeta, että audioinformaation enkoodausprosessi sisäkorvasta kohti aivoja on pitkälti hämärän peitossa!! Korvan toiminta tMyn

40 Ihminen pystyy erittäin tarkkaan äänenkorkeuden (pitch) erottamiseen: noin kahdestoistaosan puolisävelaskeleesta. Kun korva vastaanottaa kompleksisen audiosignaalin, niin osa informaatiosta peittyy ja siitä ei välity tietoa aivoihin. Tämä johtuu siitä, että voimakas amplitudi jollakin taajuusalueella aiheuttaa tyvikalvon värähtelyn kuvan 7 mukaisesti. Tällöin amplitudiltaan pienemmät mutta taajuusalueella lähellä olevat komponentit peittyvät (masking). Korvan toiminta tMyn


Lataa ppt "Korvan toiminta Ennen kuin pakkaamisesta voidaan puhua, tulee ymmärtää jonkin verran korvan toiminnasta….. Korvakäytävään kulkeutuvat ääniaallot saavat."

Samankaltaiset esitykset


Iklan oleh Google